Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-021-02791-2 | DOI Listing |
Heliyon
January 2025
Clinical Pharmacology and Toxicology Research Unit, Namur Research Institute for Life Sciences, University of Namur, 5000, Namur, Belgium.
Background: SARS-CoV-2 infection during pregnancy poses health risks to both mother and fetus. This study investigates neutralizing antibodies (NAbs) against the SARS-CoV-2 JN.1 Omicron subvariant in pregnant women, focusing on responses to natural infection, vaccination, and passive immunity.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
Fluid-silica interfaces are ubiquitous in chemistry, occurring in both natural geochemical environments and practical applications ranging from separations to catalysis. Simulations of these interfaces have been, and continue to be, a significant avenue for understanding their behavior. A constraining factor, however, is the availability of accurate force fields.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!