Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we numerically investigated the mechanical responses and trajectories of frictional granular particles under oscillatory shear in the reversible phase where particle trajectories form closed loops below the yielding point. When the friction coefficient is small, the storage modulus exhibits softening, and the loss modulus remains finite in the quasi-static limit. As the friction coefficient increases, the softening and residual loss modulus are suppressed. The storage and loss moduli satisfy scaling laws if they are plotted as functions of the areas of the loop trajectories divided by the strain amplitude and diameter of grains, at least for small values of the areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/s10189-021-00075-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!