Gut health has major implications for the general health of food-producing animals such as the layer birds used in the egg industry. In order to modulate gut microbiota for the benefit of gut health, an understanding of the dynamics and details of the development of gut microbiota is critical. The present study investigated the phylogenetic composition of the gut microbiota of a commercial layer flock raised in cages from hatch to the end of the production cycle. This study also aimed to understand the establishment and development of gut microbiota in layer chickens. Results showed that the faecal microbiota was dominated by phyla Firmicutes and Proteobacteria in the rearing phase, but Bacteroidetes in mid lay and late lay phase. The gut microbiota composition changed significantly during the transfer of the flock from the rearing to the production shed. The richness and diversity of gut microbiota increased after week 6 of the flocks age and stabilized in the mid and late lay phase. The overall dynamics of gut microbiota development was similar to that reported in earlier studies, but the phylogenetic composition at the phylum and family level was different. The production stage of the birds is one of the important factors in the development of gut microbiota. This study has contributed to a better understanding of baseline gut microbiota development over the complete life cycles in layer chickens and will help to develop strategies to improve the gut health. KEY POINTS: • Faecal microbiota of caged hens was dominated by phyla Firmicutes and Proteobacteria in the rearing phase. • The gut microbiota composition changed significantly during the transfer of the flock from the rearing to the production shed. • The richness and diversity of gut microbiota increased after week 6 of the flocks age and stabilized in the mid and late lay phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-021-11333-8 | DOI Listing |
Food Funct
January 2025
Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.
View Article and Find Full Text PDFBiomol Biomed
December 2024
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Severe acute pancreatitis (SAP) is one of the leading causes of hospital admissions for gastrointestinal diseases, with a rising incidence worldwide. Intestinal microbiota dysbiosis caused by SAP exacerbates systemic inflammatory response syndrome and organ dysfunction. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic option for gastrointestinal diseases.
View Article and Find Full Text PDFGut Microbes
December 2025
Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA.
There is a complex interplay between the gut microbes, liver, and central nervous system, a gut-liver-brain axis, where the brain impacts intestinal and hepatic function while the gut and liver can impact cognition and mental status. Dysregulation of this axis can be seen in numerous diseases. Hepatic encephalopathy, a consequence of cirrhosis, is perhaps the best studied perturbation of this system.
View Article and Find Full Text PDFBiosci Microbiota Food Health
September 2024
Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-1-21 Midori, Moriya-shi, Ibaraki 302-0106, Japan.
α-Cyclodextrin (αCD), a cyclic hexasaccharide composed of six glucose units, is not digested in the small intestine but is completely fermented by gut microbes. Recently, we have reported that αCD supplementation for nonathlete men improved their 10 km biking times. However, the beneficial effects of αCD on exercise are not yet fully understood.
View Article and Find Full Text PDFBiosci Microbiota Food Health
July 2024
Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
In end-stage kidney disease requiring hemodialysis, patients at nutritional risk have a poor prognosis. The gut microbiota is important for maintaining the nutritional status of patients. However, it remains unclear whether an altered gut microbiota correlates with increased nutritional risk in patients undergoing hemodialysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!