Adventitious rooting of walnut species (Juglans L.) is known to be rather difficult, especially for mature trees. The adventitious root formation (ARF) capacities of mature trees can be significantly improved by rejuvenation. However, the underlying gene regulatory networks (GRNs) of rejuvenation remain largely unknown. To characterize such regulatory networks, we carried out the transcriptomic study using RNA samples of the cambia and peripheral tissues on the bottom of rejuvenated and mature walnut (Juglans hindsii × J. regia) cuttings during the ARF. The RNA sequencing data suggested that zeatin biosynthesis, energy metabolism and substance metabolism were activated by rejuvenation, whereas photosynthesis, fatty acid biosynthesis and the synthesis pathways for secondary metabolites were inhibited. The inter- and intra-module GRNs were constructed using differentially expressed genes. We identified 35 hub genes involved in five modules associated with ARF. Among these hub genes, particularly, beta-glucosidase-like (BGLs) family members involved in auxin metabolism were overexpressed at the early stage of the ARF. Furthermore, BGL12 from the cuttings of Juglans was overexpressed in Populus alba × P. glandulosa. Accelerated ARF and increased number of ARs were observed in the transgenic poplars. These results provide a high-resolution atlas of gene activity during ARF and help to uncover the regulatory modules associated with the ARF promoted by rejuvenation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpab038 | DOI Listing |
Plant Cell Environ
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark.
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany.
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) H labeling and (2) O natural abundance.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000, Grenoble, France.
Cadmium (Cd) concentrations in cacao beans from Latin America often exceed limits for trading. A better understanding of the mechanisms of Cd accumulation in Theobroma cacao L. trees is necessary to advance mitigation strategies.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Yerba Buena 4107, Tucumán, Argentina.
Although epiphytes and lianas share the same habitat, most research has treated these two groups independently. This study aimed to evaluate the co-occurrence of vascular epiphytes and lianas in the subtropical montane forests of northwestern Argentina. We recorded epiphyte cover and liana basal area on trees ≥ 10-cm-dbh in 120 20 × 20 m plots in the Sierra de San Javier (Tucumán, Argentina).
View Article and Find Full Text PDFPlants (Basel)
December 2024
National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
The 'Cuimi' kumquat is a unique citrus cultivar known for its thin, crisp pulp and sweet, aromatic flavor. In addition to its use in fresh consumption and processing, this variety exhibits certain medicinal properties. This study aims to investigate the genetic diversity of the Huanglongbing (HLB) bacterium across different tissues of the 'Cuimi' kumquat, offering a theoretical basis for understanding the HLB epidemic in Dechang County, Sichuan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!