AI Article Synopsis

  • The COVID-19 pandemic has caused a global crisis, prompting urgent research for new antiviral treatments as existing options are limited and the SARS-CoV-2 virus spreads rapidly.
  • This study investigates the potential of marine algal compounds to inhibit the virus's entry and replication using molecular docking analysis, focusing on key targets in the virus's lifecycle like spike glycoprotein and 3-chymotrypsin-like protease.
  • Results highlight several marine algal compounds, such as κ-carrageenan and eckol, showing promising binding scores against SARS-CoV-2 targets, suggesting their potential as effective treatments after further testing and validation.

Article Abstract

The COVID-19 pandemic has severely destructed human life worldwide, with no suitable treatment until now. SARS-CoV-2 virus is unprecedented, resistance against number of therapeutics and spreading rapidly with high mortality, which warrants the need to discover new effective drugs to combat this situation. This current study is undertaken to explore the antiviral potential of marine algal compounds to inhibit the viral entry and its multiplication using computational analysis. Among the proven drug discovery targets of SARS-CoV-2, spike glycoprotein and 3-chymotrypsin-like protease are responsible for the virus attachment and viral genome replication in the host cell. In this study, the above-mentioned drug targets were docked with marine algal compounds (sulfated polysaccharides, polysaccharide derivatives and polyphenols) using molecular docking tools (AutoDockTools). The obtained results indicate that κ-carrageenan, laminarin, eckol, trifucol and β-D-galactose are the top-ranking compounds showing better docking scores with SARS-CoV-2 targets, than the current experimental COVID-19 antiviral drugs like dexamethasone, remdesivir, favipiravir and MIV-150. Further, molecular dynamic simulation, ADMET and density functional theory calculations were evaluated to substantiate the findings. To the best of our knowledge, this is the first report on analysis of aforesaid algal metabolites against SARS-CoV-2 targets. This study concludes that these metabolites can be curative for COVID-19 in the hour of need after further validations in and testings.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146311PMC
http://dx.doi.org/10.1080/07391102.2021.1921032DOI Listing

Publication Analysis

Top Keywords

marine algal
12
spike glycoprotein
8
drug discovery
8
algal compounds
8
sars-cov-2 targets
8
sars-cov-2
5
algal antagonists
4
antagonists targeting
4
targeting 3cl
4
3cl protease
4

Similar Publications

Vanadium-Dependent Haloperoxidase Gene Evolution in Brown Algae: Evidence for Horizontal Gene Transfer.

Int J Mol Sci

January 2025

Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored.

View Article and Find Full Text PDF

Analysis on Bacterial Community of Algal Blooms Near Pingtan Island, China.

Biology (Basel)

January 2025

Fujian Key Laboratory of Special Marine Bio-Resources Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.

, known as a global red tide species, is a common red tide species found in Pingtan Island. To examine the bacterial community structure in different environments during the red tide period of on Pingtan Island, samples were collected from the Algal Bloom Area (ABA), Transition Area (TA), and Non-Algal Bloom Area (NBA) on 6 April 2022, and the environmental physicochemical factors and bacterial community were determined. The outbreak of red tide significantly impacted the water quality and bacterial community structure in the affected sea area.

View Article and Find Full Text PDF

Risk Assessment of Harmful Algal Blooms in Salmon Farming: Scotland as a Case Study.

Toxins (Basel)

January 2025

Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.

This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.

View Article and Find Full Text PDF

is an important source of natural β-carotene (containing and isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. In this study, the effects of SA on the growth, biochemical composition, antioxidant enzyme activity, key enzymes of β-carotene synthesis, and cis-and trans-isomers of β-carotene in under different salt concentrations were investigated.

View Article and Find Full Text PDF

Assessment of the Chemical Diversity and Functional Properties of Secondary Metabolites from the Marine Fungus .

J Fungi (Basel)

December 2024

Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile.

Natural compounds derived from microorganisms, especially those with antioxidant and anticancer properties, are gaining attention for their potential applications in biomedical, cosmetic, and food industries. Marine fungi, such as , are particularly promising due to their ability to produce bioactive metabolites through the degradation of marine algal polysaccharides. This study investigates the metabolic diversity of grown on different carbon sources: glucose, spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!