The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186485PMC
http://dx.doi.org/10.1242/jcs.252213DOI Listing

Publication Analysis

Top Keywords

host cell
24
liver stage
20
cell golgi
16
plasmodium berghei
8
stage parasites
8
cell
6
golgi
6
host
6
liver
5
stage
5

Similar Publications

Schistosoma sex-biased microRNAs regulate ovarian development and egg production by targeting Wnt signaling pathway.

Commun Biol

December 2024

Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China.

Adult Schistosoma produces a large number of eggs that play essential roles in host pathology and disease dissemination. Consequently, understanding the mechanisms of sexual maturation and egg production may open a new avenue for controlling schistosomiasis. Here, we describe that Bantam miRNA and miR-1989 regulate Wnt signaling pathway by targeting Frizzled-5/7/9, which is involved in ovarian development and oviposition.

View Article and Find Full Text PDF

Identification of a broad-inhibition influenza neuraminidase antibody from pre-existing memory B cells.

Cell Host Microbe

December 2024

Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; School of Life Science, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Identifying broadly reactive B precursor cells and conserved epitopes is crucial for developing a universal flu vaccine. In this study, using influenza neuraminidase (NA) mutant probes, we find that human pre-existing NA-specific memory B cells (MBCs) account for ∼0.25% of total MBCs, which are heterogeneous and dominated by class-unswitched MBCs.

View Article and Find Full Text PDF

Dynamics of immune responses following duck Tembusu virus infection in adult laying ducks reveal the effect of age-related immune variation on disease severity.

Poult Sci

December 2024

Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 10330. Electronic address:

Duck Tembusu virus (DTMUV), an emerging avian pathogenic flavivirus, is notably associated with neurological disorders and acute egg drop syndrome in ducks. We previously demonstrated that the susceptibility of ducks to DTMUV infection varies significantly with age, with younger ducks (4-week-old) exhibiting more severe disease than older ducks (27-week-old). However, the immunological mechanisms underlying these age-related differences in disease severity remain unclear.

View Article and Find Full Text PDF

Background: Xiaohua Funing Tang (XHFND) is a decoction formula of traditional Chinese medicine (TCM) and possesses the potential to manage chronic atrophic gastritis (CAG) with liver depression and spleen deficiency (LDSD), but the mechanisms were still unclear.

Purpose: Our aim is to reveal the overall synergistic mechanisms of XHFND against CAG with LDSD.

Methods: Based on a CAG rat model with LDSD, this study combined metabolomics, gut microbiota, and network pharmacology techniques to demonstrate the XHFND mechanisms with multiple components and targets.

View Article and Find Full Text PDF

Rebalancing immune homeostasis in combating disease: The impact of medicine food homology plants and gut microbiome.

Phytomedicine

October 2024

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China. Electronic address:

Background: Gut microbiota plays an important role in multiple human physiological processes and an imbalance in it, including the species, abundance, and metabolites can lead to diseases. These enteric microorganisms modulate immune homeostasis by presenting a myriad of antigenic determinants and microbial metabolites. Medicinal and food homologous (MFH) plants, edible herbal materials for both medicine and food, are important parts of Traditional Chinese Medicine (TCM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!