Cancer survivors are more susceptible to pathologies such as hypertension, liver disease, depression, and coronary artery disease when compared with individuals who have never been diagnosed with cancer. Therefore, it is important to understand how tumor burden negatively impacts nontumor-bearing tissues that may impact future disease susceptibility. We hypothesized that the energetic costs of a tumor would compromise proteostatic maintenance in other tissues. Therefore, the purpose of this study was to determine if tumor burden changes protein synthesis and proliferation rates in heart, brain, and liver. One million Lewis lung carcinoma (LLC) cells or phosphate-buffered saline (PBS, sham) were injected into the hind flank of female mice at ∼4.5 mo of age, and the tumor developed for 3 wk. Rates of proliferation and protein synthesis were measured in heart, brain, liver, and tumor tissue. Compared with sham, rates of protein synthesis (structural/nuclear, cytosolic, mitochondrial, and collagen) relative to proliferation were lower in the heart and liver of LLC mice, but higher in the brain of LLC mice. In the tumor tissue, the ratio of protein synthesis to DNA synthesis was approximately 1.0 showing that protein synthesis in the tumor was used for proliferation with little proteostatic maintenance. We further provide evidence that the differences in tissue responses may be due to energetic stress. We concluded that the decrease in proteostatic maintenance in liver, heart, and muscle might contribute to the increased risk of disease in cancer survivors. We present data showing that simultaneously measuring protein synthesis and cell proliferation can help in the understanding of protein turnover as a proteostatic process in response to tumor burden. In some tissues, like hepatic, cardiac, and skeletal muscle, there was a decrease in the protein to DNA synthesis ratio indicating less proteostatic maintenance. In contrast, the brain maintained or even increased this protein to DNA synthesis ratio indicating more proteostatic maintenance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325617 | PMC |
http://dx.doi.org/10.1152/japplphysiol.01026.2020 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFSci Data
January 2025
Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea.
Salvia sclarea is a medicinal herb from the Lamiaceae family, valued for its essential oil which contains sclareol, linalool, linalyl acetate, and other compounds. Despite its extensive use, the genetic mechanisms of S. sclarea are not well understood.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Medicine, Taizhou University, Taizhou 318000, China.
Allergic asthma is a significant international concern in respiratory health, which can be exacerbated by the increasing levels of non-allergenic pollutants. This rise in airborne pollutants is a primary driver behind the growing prevalence of asthma, posing a health emergency. Additionally, climatic risk factors can contribute to the onset and progression of asthma.
View Article and Find Full Text PDFGene
January 2025
Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!