Riboswitches are regulatory elements of bacterial mRNA which function with conformational switching upon binding of specific cellular metabolites. In particular, transcriptional riboswitches regulate gene expression kinetically through the conformational change of the aptamer domain. In this study, we investigate the conformational dynamics and ligand binding mechanisms of the aptamer domain of a transcriptional prequeuosine (preQ) riboswitch from using two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS) with microsecond time resolution. The obtained time-resolved single-molecule data indicate that the aptamer domain undergoes folding/unfolding including three forms, which are attributed to hairpin (O), pseudoknot-like (pF), and H-type pseudoknot (fF) structures. It is found that a cofactor, Mg, binds only to the fF form with the conformational selection mechanism. In contrast, it is indicated that the ligand, preQ, binds to the O form with the induced-fit mechanism and significantly accelerates the microsecond O → pF folding process. It is also shown that the binding with preQ substantially stabilizes the fF form that is generated from the pF form with a long time constant (>10 ms). Combining these results with the results of a former smFRET study on the slower time scale, we obtain an overall picture of the folding/unfolding dynamics of the aptamer domain as well as its energy landscape. On the basis of the picture obtained, we discuss the significance of the microsecond folding/unfolding of the aptamer domain for biological function of the riboswitch and propose the molecular mechanism of the gene expression controlled by the structural dynamics of the aptamer domain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c01077DOI Listing

Publication Analysis

Top Keywords

aptamer domain
24
preq riboswitch
8
two-dimensional fluorescence
8
fluorescence lifetime
8
lifetime correlation
8
correlation spectroscopy
8
gene expression
8
binds form
8
dynamics aptamer
8
aptamer
6

Similar Publications

Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the "always-on" response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement.

View Article and Find Full Text PDF

RNA folding kinetics control riboswitch sensitivity in vivo.

Nat Commun

January 2025

Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.

Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells.

View Article and Find Full Text PDF

Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA.

View Article and Find Full Text PDF

We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.

View Article and Find Full Text PDF

Factor XIa (FXIa) is a plasma protease that catalyzes the intrinsic pathway of blood coagulation, thus being regarded as a promising antithrombotic target. Circular DNA aptamers, with their dramatically enhanced biological and structural stability, hold great potential as new-generation DNA-based anticoagulants. However, the functional selection of circular aptamers and large-scale synthesis of them remains a substantial challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!