Strains of Bacillus thuringiensis (Bt) are commonly commercialized as bioinoculants for insect pest control, but their benefits go beyond their insecticidal property: they can act as plant growth-promoters. Auxins play a major role in the plant growth promotion. However, the mechanism of auxin production by the Bacilli group, and more specifically by Bt strains, is unclear. In previous work, the plant growth-promoting rhizobacterium (PGPR) B. thuringiensis strain RZ2MS9 increased the corn roots. This drew our attention to the strain's auxin production trait, earlier detected in vitro. Here, we demonstrate that in its genome, RZ2MS9 harbours the complete set of genes required in two pathways that are used for Indole acetic acid (IAA) production. We also detected that the strain produces almost five times more IAA during the stationary phase. The bacterial application increased the shoot dry weight of the Micro-Tom (MT) tomato by 24%. The application also modified MT root architecture, with an increase of 26% in the average lateral root length and inhibition of the axial root. At the cellular level, RZ2MS9-treated MT plants presented elongated root cortical cells with intensified mitotic activity. Altogether, these are the best characterized auxin-associated phenotypes. Besides that, no growth alteration was detected in the auxin-insensitive diageotropic (dgt) plants either with or without the RZ2MS9 inoculation. Our results suggest that auxins play an important role in the ability of B. thuringiensis RZ2MS9 to promote MT growth and provide a better understanding of the auxin production mechanism by a Bt strain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-021-02361-zDOI Listing

Publication Analysis

Top Keywords

auxin production
12
bacillus thuringiensis
8
thuringiensis rz2ms9
8
root architecture
8
auxins play
8
rz2ms9
5
root
5
auxin-producing bacillus
4
thuringiensis
4
rz2ms9 promotes
4

Similar Publications

Red, known as Huangjing in Chinese, is a perennial plant valued in traditional Chinese medicine and is a nutritional food ingredient. With increasing market demand outpacing wild resource availability, cultivation has become essential for sustainable production. However, the cultivation of is challenged by the double dormancy characteristics of seeds, which include embryo and physiological dormancy.

View Article and Find Full Text PDF

The global rise in population has led to an increased demand for food production, necessitating the adoption of sustainable agricultural practices. Traditional methods often rely on synthetic chemicals that negatively impact both human health and the environment. This study aimed to screen soil fungal strains for plant-growth-promoting traits, specifically focusing on their ability to solubilize phosphates, produce indole-3-acetic acid (IAA), and synthesize siderophores.

View Article and Find Full Text PDF

Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth.

New Phytol

December 2024

Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.

Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.

View Article and Find Full Text PDF

Light conversion films are crucial for optimizing vegetable crop production in greenhouses, particularly during winter and spring seasons. This study investigated the effects of a europium-based light conversion film (RPO) compared to traditional polyolefin film (PO film, control) on cucumber (Cucumis sativus L.) cultivation, focusing on handle length, yield, and fruit quality in a randomized complete block design with three replications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!