Local lesion of the dopaminergic (DA) terminals of the nucleus accumbens have been described to reproduce part of the behavioral deficits evoked by the lesion of the whole mesocorticolimbic DA system. The most straightforward interpretation of these results would be that the DA innervation of the nucleus accumbens is necessary for and critically involved in the normal performance of the given behaviors. However, while giving some indication as to the necessity of the integrity of this DA innervation for normal behaviors, such an approach cannot reveal whether the presence of the DA innervation of other mesocorticolimbic areas (e.g. amygdala, septum, etc.) is also required. In order to approach this question, the behavioral effects of DA grafts implanted into the nucleus accumbens of rats were evaluated following two different 6-hydroxydopamine-induced lesions: a lesion restricted to the anterior DA field (DA terminals of the nucleus accumbens and to a lesser degree the frontal cortex and anteromedial striatum) or a lesion of the whole mesocorticolimbic DA system. The latter lesion induces a disappearance of the DA innervation of the nucleus accumbens as well as the amygdala, septum, etc. Both kinds of lesions led to locomotor hypoactivity, loss of locomotor activation by amphetamine, increased locomotor stimulation to apomorphine, decrease of exploratory activity and loss of hoarding behavior. These deficits were not seen in grafted animals bearing a local lesion of the DA innervation of this structure. For some of these recoveries, however, a pharmacological stimulation of the grafted neurons was required to reveal the effect of the graft. In the case of the total lesion of the mesocorticolimbic DA system, only locomotor dysfunctions were compensated by the intra-accumbens DA implants, while the other deficits remained intact, irrespective of a stimulation of the graft. These results indicate that the re-establishment of the DA innervation of the nucleus accumbens is a sufficient condition for the compensation of locomotor deficits, irrespective of the presence of the DA terminals in more posterior limbic structures, while for deficits of more complex behaviors the simultaneous presence of posterior DA innervations is also required. This latter requirement suggests the existence of some cooperativity between the different central DA terminal areas for the normal performance of behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0166-4328(88)90054-xDOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
28
lesion mesocorticolimbic
12
mesocorticolimbic system
12
innervation nucleus
12
behavioral deficits
8
local lesion
8
terminals nucleus
8
normal performance
8
performance behaviors
8
amygdala septum
8

Similar Publications

Stress plays a significant role in the onset of numerous psychiatric disorders. Depending on individual resilience or stressor's nature, long-term changes to stress in the brain can lead to a wide range of behavioral symptoms, including social withdrawal, feelings of helplessness, and emotional overeating. The brain receptor molecules are key mediators of these processes, translating neuromodulatory signals into neuronal responses or circuit activity changes that ultimately shape behavioral outcomes.

View Article and Find Full Text PDF

Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction.

Front Psychiatry

January 2025

Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.

Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex.

View Article and Find Full Text PDF

Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

Background: While Alcohol Use Disorder (AUD) is frequently associated with impulsivity, its structural brain substrates are still poorly defined. The triadic model of addiction postulates that impulsive behavior is regulated by an amygdalo-striatal impulsive subcomponent, a prefrontal and cerebellar reflective subcomponent, and an insular regulatory subcomponent. The objective of this study was thus to examine the relationships between self-evaluated impulsivity and structural brain abnormalities in patients with severe AUD (sAUD) using the triadic model as a theoretical framework.

View Article and Find Full Text PDF

It has been proposed that social groups are maintained both by reward resulting from positive social interactions and by the reduction of a negative state that would otherwise be caused by social separation. European starlings, Sturnus vulgaris, develop strong conditioned place preferences for places associated with the production of song in flocks outside the breeding season (gregarious song) and singers are motivated to rejoin the flock following removal. This indicates that the act of singing in flocks is associated with a positive affective state and raises the possibility that reward induced by song in flocks may play a role in flock maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!