The Proximal Tubule Toxicity of Immunoglobulin Light Chains.

Kidney Int Rep

Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.

Published: May 2021

Plasma and B cells dyscrasias that overproduce monoclonal immunoglobulin free light chains (FLCs) affect the kidney frequently in various ways. The hematologic dyscrasia responsible for the production of FLCs may or may not meet the criteria for cancer, such as multiple myeloma (MM) or lymphoma, or may remain subclinical. If there is overt malignancy, the accompanying kidney disorder is called myeloma- or lymphoma-associated. If the dyscrasia is subclinical, the associated kidney disorders are grouped as monoclonal gammopathy of renal significance. Glomeruli and tubules may both be involved. The proximal tubule disorders comprise a spectrum of interesting syndromes, which range in severity. This review focuses on the recent insights gained into the patterns and the mechanisms of proximal tubule toxicity of FLCs, including subtle transport disorders, such as proximal tubule acidosis, partial or complete Fanconi syndrome, or severe acute or chronic renal failure. Histologically, there may be crystal deposition in the proximal tubule cells, acute tubule injury, interstitial inflammation, fibrosis, and tubule atrophy. Specific structural alterations in the V domain of FLCs caused by somatic hypermutations are responsible for crystal formation as well as partial or complete Fanconi syndrome. Besides crystal formation, tubulointerstitial inflammation and proximal tubulopathy can be mediated by direct activation of inflammatory pathways through cytokines and Toll-like receptors due to cell stress responses induced by excessive FLC endocytosis into the proximal tubule cells. Therapy directed against the clonal source of the toxic light chain can prevent progression to more severe lesions and may help preserve kidney function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116766PMC
http://dx.doi.org/10.1016/j.ekir.2021.02.026DOI Listing

Publication Analysis

Top Keywords

proximal tubule
24
tubule toxicity
8
light chains
8
partial complete
8
complete fanconi
8
fanconi syndrome
8
tubule cells
8
crystal formation
8
proximal
7
tubule
7

Similar Publications

Calcineurin inhibitors (CNIs) are indispensable immunosuppressants for transplant recipients and patients with autoimmune diseases, but chronic use causes nephrotoxicity, including kidney fibrosis. Why inhibiting calcineurin, a serine/threonine phosphatase, causes kidney fibrosis remains unknown. We performed single-nucleus RNA sequencing of the kidney from a chronic CNI nephrotoxicity mouse model and found an increased proportion of injured proximal tubule cells, which exhibited altered expression of genes associated with oxidative phosphorylation, cellular senescence and fibrosis.

View Article and Find Full Text PDF

Proteinuria and tubular cells: Plasticity and toxicity.

Acta Physiol (Oxf)

February 2025

Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.

Aim: Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression.

View Article and Find Full Text PDF

Dent disease: Clinical Practice Recommendations.

Nephrol Dial Transplant

January 2025

Veltishev Research Clinical Institute for Pediatrics & Pediatric Surgery, Pirogov Russian National Research Medical University, Moscow, Russia.

Dent disease is a rare X-linked tubulopathy that is characterized by low-molecular-weight (LMW) proteinuria associated with hypercalciuria, which may lead to nephrolithiasis, nephrocalcinosis, and kidney failure between the 3rd and the 5th decades of life in 30-80% of affected males. The disease is most often associated with various manifestations of proximal tubular dysfunction. Affected individuals may present nephrotic range proteinuria which may be misinterpreted and cause diagnostic delay.

View Article and Find Full Text PDF

Dose-related effects of eugenol: exploring renal functionality and morphology in healthy Wistar rats.

Food Chem Toxicol

January 2025

Laboratory of Structural Biology, Departament of Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Department of Veterinary, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. Electronic address:

Eugenol has pharmacological properties, but its impact on renal function is limitedly studied. Thus, this study evaluated the effects of eugenol at 10, 20, and 40 mg Kg, administered via gavage for 60 days, on histological, biochemical, oxidative, and proteomic parameters in rat kidneys. Adult Wistar rats treated with 10 mg Kg of eugenol had kidneys with low total antioxidant capacity, high nitric oxide content, and high percentual of blood vessels, with no damage to renal function or morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!