Rainfall prediction is immensely crucial in daily life routine as well as for water resource management, stochastic hydrology, rain run-off modeling and flood risk mitigation. Quantitative prediction of rainfall time series is extremely challenging as compared to other meteorological parameters due to its variability in local features that involves temporal and spatial scales. Consequently, this requires a highly complex system having an advance model to accurately capture the highly non linear processes occurring in the climate. The focus of this work is direct prediction of multistep forecasting, where a separate time series model for each forecasting horizon is considered and forecasts are computed using observed data samples. Forecasting in this method is performed by proposing a deep learning approach, i.e, Temporal Deep Belief Network (DBN). The best model is selected from several baseline models on the basis of performance analysis metrics. The results suggest that the temporal DBN model outperforms the conventional Convolutional Neural Network (CNN) specifically on rainfall time series forecasting. According to our experimentation, a modified DBN with hidden layes (300-200-100-10) performs best with 4.59E-05, 0.0068 and 0.94 values of MSE, RMSE and R value respectively on testing samples. However, we found that training DBN is more exhaustive and computationally intensive than other deep learning architectures. Findings of this research can be further utilized as basis for the advance forecasting of other weather parameters with same climate conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114799 | PMC |
http://dx.doi.org/10.7717/peerj-cs.514 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFComput Biol Med
January 2025
School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!