Imidazo[1,2-]pyridine is a well-known scaffold in many marketed drugs, such as Zolpidem, Minodronic acid, Miroprofen and DS-1 and it also serves as a broadly applied pharmacophore in drug discovery. The scaffold revoked a wave of interest when Groebke, Blackburn and Bienaymé reported independently a new three component reaction resulting in compounds with the imidazo[1,2-]-heterocycles as a core structure. During the course of two decades the Groebke Blackburn Bienaymé (GBB-3CR) reaction has emerged as a very important multicomponent reaction (MCR), resulting in over a hundred patents and a great number of publications in various fields of interest. Now two compounds derived from GBB-3CR chemistry received FDA approval. To celebrate the first 20 years of GBB-chemistry, we present an overview of the chemistry of the GBB-3CR, including an analysis of each of the three starting material classes, solvents and catalysts. Additionally, a list of patents and their applications and a more in-depth summary of the biological targets that were addressed, including structural biology analysis, is given.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130801 | PMC |
http://dx.doi.org/10.1002/ejoc.201901124 | DOI Listing |
J Agric Food Chem
December 2024
Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, 70904-970 Brasília, DF, Brazil.
In this work, several imidazo[1,2-]pyridines were synthesized through the Groebke-Blackburn-Bienaymé three-component reaction (GBB-3CR), and their phytotoxicity was evaluated by the influence on the growth of wheat coleoptiles and three important agricultural seeds (, , and ) at test concentrations of 1000, 300, 100, 30, and 10 μM. A structure-activity relationship was established, showing the importance of halogen groups at the position of the attached aromatic ring and the presence of a cyclohexylamine group for greater activity. Post-modification of some GBB-3CR adducts was carried out, leading to imidazo[1,2-]pyridine-tetrazole hybrids, which were also evaluated in these bioassays.
View Article and Find Full Text PDFSci Adv
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China.
Imidazo[1,2-]pyridines are privileged heterocycles with diverse applications in medicinal chemistry; however, the catalytic asymmetric synthesis of these heterocyclic structures remains underexplored. Herein, we present an efficient and modular approach for the atroposelective synthesis of axially chiral imidazo[1,2-]pyridines via an asymmetric multicomponent reaction. By utilizing a chiral phosphoric acid catalyst, the Groebke-Blackburn-Bienaymé reaction involving various 6-aryl-2-aminopyridines, aldehydes, and isocyanides gave access to a wide range of imidazo[1,2-]pyridine atropoisomers with high to excellent yields and enantioselectivities.
View Article and Find Full Text PDFDrug Discov Today
December 2024
Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, New Delhi 110078, India. Electronic address:
Multicomponent reactions (MCRs) have significant relevance in the field of synthetic chemistry, and in recent times one of the MCR variants, named the Groebke-Blackburn-Bienaymé (GBB) reaction, has attracted massive attention for the synthesis of biologically important scaffolds. The present review elaborates on the chemical advancement reported for the GBB reaction with an emphasis on the role of various catalytic systems. Further, the role of the GBB reaction has been redefined as a standard protocol for the synthesis of an array of potential bioactive compounds.
View Article and Find Full Text PDFMolecules
October 2024
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
The antiapoptotic BAG3 protein plays a crucial role in cellular proteostasis and it is involved in several signalling pathways governing cell proliferation and survival. Owing to its multimodular structure, it possesses an extensive interactome including the molecular chaperone HSP70 and other specific cellular partners, which make it an eminent factor in several pathologies, particularly in cancer. Despite its potential as a therapeutic target, very few BAG3 modulators have been disclosed so far.
View Article and Find Full Text PDFChempluschem
September 2024
Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México.
Bis-heterocycles were synthesized via a consecutive one-pot process by a Groebke-Blackburn-Bienaymé reaction (GBB-3CR) followed by Copper-catalyzed Alkyne-Azide Cycloaddition (CuAAC) assisted by alternative sustainable energies (ASE) such as ultrasonic and mechanical. These efficient and convergent strategies allowed the in situ generation of complex azides functionalized with imidazo[1,2-a]pyridines (IMPs), which was used as a synthetic platform. The target molecules contain two privileged scaffolds in medicinal chemistry: IMPs and the heterocyclic bioisostere of trans-amide bond, the 1,4-disubstituted 1H-1,2,3-triazoles (1,4-DS-1,2,3-Ts).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!