Multiple osteochondromas (MO) is an autosomal dominant hereditary disorder, which typically manifests as skeletal dysplasia, mainly involving long bones and knees, ankles, elbows, wrists, shoulders, and pelvis. Previous studies have demonstrated that mutations in exostosin glycosyl transferase-1 () and exostosin glycosyl transferase-2 () were the main cause of MO. In this study, we enrolled 2 families with MO. Sanger sequencing revealed 2 novel frameshift mutations - c.1432_1433insCCCCCCT; p.Lys479Profs*44 and c.1431_1431delC; p.S478PfsX10 - in the gene detected in 2 families, respectively. Both novel mutations, located in the conserved domain of EXT1 and predicted to be disease causing by informatics programs, were absent in our 200 control cohorts and other public databases. Our study expanded the spectrum of mutations and contributed to genetic diagnosis and counseling of patients with MO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114039PMC
http://dx.doi.org/10.1159/000512856DOI Listing

Publication Analysis

Top Keywords

novel frameshift
8
frameshift mutations
8
mutations exostosin
8
multiple osteochondromas
8
exostosin glycosyl
8
mutations
5
identification novel
4
exostosin families
4
families multiple
4
osteochondromas multiple
4

Similar Publications

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

An increasing number of autosomal recessive forms of adenomatous polyposis have been described, but some in very few cases. Here, we describe a rare case of biallelic germline pathogenic variants in the MLH3 gene, implicating it as a potential cause of early colorectal cancer. The patient, a 47-year-old woman, presented with rectal bleeding, leading to the discovery of a malignant rectal tumor and adenomas during colonoscopy.

View Article and Find Full Text PDF

Background: Frameshift variants in the variable number tandem repeat region of () cause autosomal dominant tubulointerstitial kidney disease (ADTKD-) but are challenging to detect. We investigated the prevalence in patients with kidney failure of undetermined aetiology and compared Danish families with ADTKD-.

Methods: We recruited patients with suspected kidney failure of undetermined aetiology at ≤50 years and excluded those with a clear-cut clinical or histopathological kidney diagnoses or established genetic kidney diseases identified thorough medical record review.

View Article and Find Full Text PDF

Background: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Multiple morphological abnormalities of the sperm flagella (MMAF) represent a severe and genetically heterogeneous form of asthenozoospermia. Over 50 genes have been associated, but approximately half of MMAF cases remain unexplained.

View Article and Find Full Text PDF

Identification of novel CDH23 heterozygous variants causing autosomal recessive nonsyndromic hearing loss.

Genes Genomics

January 2025

Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, China.

Background: Hearing loss adversely impacts language development, acquisition, and the social and cognitive maturation of affected children. The hearing loss etiology mainly includes genetic factors and environmental factors, of which the former account for about 50-60%.

Objective: This study aimed to investigate the genetic basis of autosomal recessive non-syndromic hearing loss (NSHL) by identifying and characterizing novel variants in the CDH23 gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!