Background: ARVC is a rare genetic-related disease characterized by fibrous fat replacement in the ventricular myocardium, caused by mutations in genes encoding for the desmosomal proteins, such as the desmoglein-2 gene (DSG2). It is reported in the literature that other genetic factors may play a role in disease penetrance. Herein, we report a Chinese proband with ARVC, which was probably caused by DSG2 p.Val149Ile mutation as genetic background when carrying heterozygous PRRT2 p.Arg217ProfsTer8 mutation.
Case Presentation: A 17-year-old male with a history of paroxysmal kinesigenic dyskinesia (PKD) presented to the hospital for syncope induced by ventricular tachycardia. According to relevant clinical data and the diagnostic criteria of ARVC, a precise positive diagnosis of ARVC was finally made. Gene testing revealed that the patient carried a DSG2 heterozygous missense mutation (NM_001943: exon5: c.445G>A, p.Val149Ile) as well as frameshift mutation of PRRT2 (NM_001256442: exon2: p. Arg217Profs Ter8).
Conclusion: This is the first time to report a Chinese proband with ARVC and a history of PKD carrying both DSG2 p. val149ile mutation and PRRT2 p. Arg217ProfsTer8 mutation, which can provide a new direction for gene screening of patients with ARVC and further supplements for its diagnostic criteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128131 | PMC |
http://dx.doi.org/10.2147/IMCRJ.S309668 | DOI Listing |
Cardiovasc Drugs Ther
January 2025
The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
Purpose: Reperfusion of the ischaemic heart is essential to limit myocardial infarction. However, reperfusion can cause cardiomyocyte hypercontracture. Recently, cardiac myosin-targeted inhibitors (CMIs), such as Mavacamten (MYK-461) and Aficamten (CK-274), have been developed to treat patients with cardiac hypercontractility.
View Article and Find Full Text PDFJACC Case Rep
November 2024
SingHealth Duke-NUS Genomic Medicine Centre, Duke NUS Medical School, Singapore.
Hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) are phenotypically distinct inherited cardiac diseases. This case report presents a woman aged 51 years with coinheritance of pathogenic/likely pathogenic variants of the β-myosin heavy chain ( p.Glu924Lys) and plakophilin 2 ( p.
View Article and Find Full Text PDFJ Clin Med
November 2024
Collegium Medicum-Faculty of Medicine, WSB University, 41-300 Dabrowa Gornicza, Poland.
Cardiomyopathies represent a diverse group of heart muscle diseases marked by structural and functional abnormalities that are not primarily caused by coronary artery disease. Recent advances in non-invasive imaging techniques, such as echocardiography, cardiac magnetic resonance, and computed tomography, have transformed diagnostic accuracy and risk stratification, reemphasizing the role of cardiac imaging in diagnosis, phenotyping, and management of these conditions. Genetic testing complements imaging by clarifying inheritance patterns, assessing sudden cardiac death risk, and informing therapeutic choices.
View Article and Find Full Text PDFCurr Heart Fail Rep
December 2024
Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands.
Purpose Of Review: This review aims to explore the emerging potential of artificial intelligence (AI) in refining risk prediction, clinical diagnosis, and treatment stratification for cardiomyopathies, with a specific emphasis on arrhythmogenic cardiomyopathy (ACM).
Recent Findings: Recent developments highlight the capacity of AI to construct sophisticated models that accurately distinguish affected from non-affected cardiomyopathy patients. These AI-driven approaches not only offer precision in risk prediction and diagnostics but also enable early identification of individuals at high risk of developing cardiomyopathy, even before symptoms occur.
Circ Genom Precis Med
December 2024
Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.).
Background: No disease-specific therapy currently exists for arrhythmogenic right ventricular cardiomyopathy (ARVC), a progressive cardiogenetic condition conferring elevated risk for ventricular arrhythmias, heart failure, and sudden cardiac death. Emerging gene therapies have the potential to fill this gap. However, little is known about how adults with ARVC, or any other inherited cardiomyopathy or arrhythmia syndrome, appraise the risks and benefits of gene therapy research and which considerations may influence their decisions about clinical trial participation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!