Background: Xanthelasma palpebrarum (XP) is a sign of hyperlipidemia and is closely linked to atherosclerosis. Since fatty liver shares similar risk factors with atherosclerosis, we hypothesized that patients with XP are also at risk of non-alcoholic fatty liver disease (NAFLD).

Methods: In this retrospective cohort study, 37 patients with XP were compared with sex- and age-matched controls undergoing general health examination. Moreover, demographic information and lipid profiles were compared. The risk of NAFLD was evaluated using the hepatic steatosis and ZJU indices. In addition, we analyzed publicly available RNA sequencing data from the GSE48452 and GSE61260 datasets in the Gene Expression Omnibus database.

Findings: Patients with XP had higher scores of hepatic steatosis index (37 ± 1.13 vs 32 ± 0.82, p=0.0006) and ZJU index (38.77 ± 1.0 vs 33.88 ± 0.74, p=0.0002). In addition, they had higher levels of lipid parameters, including total cholesterol, low-density lipoprotein (LDL), and fasting glucose. Among patients with fatty liver, individuals presenting with XP showed higher serum levels of total cholesterol (216 ± 10.4 vs 188.9 ± 7.6, p=0.04), fasting glucose (117.1 ± 6.4 vs 98.3 ± 2.4, p=0.002), and low-density lipoprotein (145.1 ± 8.7 vs 115.6 ± 6.4, p=0.009) than those without XP. In gene expression analysis, individuals presenting with non-alcoholic steatohepatitis showed higher scores of xanthelasma than those without non-alcoholic steatohepatitis.

Conclusion: Our results suggest that individuals with XP have a higher risk of progression to NAFLD and develop a more severe dyslipidemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126968PMC
http://dx.doi.org/10.2147/JIR.S305694DOI Listing

Publication Analysis

Top Keywords

fatty liver
16
risk non-alcoholic
8
non-alcoholic fatty
8
liver disease
8
xanthelasma palpebrarum
8
hepatic steatosis
8
gene expression
8
higher scores
8
total cholesterol
8
low-density lipoprotein
8

Similar Publications

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

[Research progress on the role of efferocytosis in liver diseases].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Central Laboratory, Chengdu University of TCM, School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, China.

Efferocytosis refers to the process of phagocytes engulfing and clearing the cells after programmed cell death. In recent years, an increasing number of studies have shown that the mechanisms of efferocytosis are closely related to drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, cholestatic liver diseases, metabolic-associated fatty liver disease, alcoholic liver disease, and other liver disorders. This review summarized the research progress on the role of efferocytosis in liver diseases, with the hope of providing new targets for the prevention and treatment of liver diseases.

View Article and Find Full Text PDF

Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice.

Nat Commun

January 2025

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.

View Article and Find Full Text PDF

MAFLD as a predictor of adverse cardiovascular events among CHD patients with LDL-C<1.8 mmol/L.

Nutr Metab Cardiovasc Dis

November 2024

Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China. Electronic address:

Background And Aims: Patients receiving statin therapy still suffer from adverse cardiovascular events. Metabolic (dysfunction)-associated fatty liver disease (MAFLD) is a newly proposed concept that shares common metabolic risk factors with cardiovascular disease. This study aimed to investigate the association between MAFLD and adverse cardiovascular outcomes in coronary heart disease (CHD) patients with LDL-C<1.

View Article and Find Full Text PDF

Mitochondrial dysfunction in drug-induced hepatic steatosis: recent findings and current concept.

Clin Res Hepatol Gastroenterol

January 2025

INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France. Electronic address:

Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!