AI Article Synopsis

  • MT1-MMP helps breast cancers spread by breaking down the extracellular matrix, while NME1/NM23-H1 is a metastasis suppressor whose role in local invasion isn't fully understood.
  • NME1 levels are higher in early-stage DCIS but drop in more invasive tumor types, and there's an inverse relationship between NME1 and MT1-MMP levels in aggressive breast cancer cases.
  • Blocking NME1 function accelerates tumor invasiveness by increasing MT1-MMP on the cell surface, enhancing ECM degradation and boosting the invasive capabilities of breast cancer cells.

Article Abstract

Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors, particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP, NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to invasive transition during breast cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195739PMC
http://dx.doi.org/10.1038/s41388-021-01826-1DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
breast
10
mt1-mmp surface
8
breast cancers
8
nme1
8
invasive components
8
components breast
8
plasma membrane
8
breast tumors
8
invasive transition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!