https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=34012082&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 340120822021100120221026
1476-468759378592021MayNatureNatureIn vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates.429434429-43410.1038/s41586-021-03534-yGene-editing technologies, which include the CRISPR-Cas nucleases1-3 and CRISPR base editors4,5, have the potential to permanently modify disease-causing genes in patients6. The demonstration of durable editing in target organs of nonhuman primates is a key step before in vivo administration of gene editors to patients in clinical trials. Here we demonstrate that CRISPR base editors that are delivered in vivo using lipid nanoparticles can efficiently and precisely modify disease-related genes in living cynomolgus monkeys (Macaca fascicularis). We observed a near-complete knockdown of PCSK9 in the liver after a single infusion of lipid nanoparticles, with concomitant reductions in blood levels of PCSK9 and low-density lipoprotein cholesterol of approximately 90% and about 60%, respectively; all of these changes remained stable for at least 8 months after a single-dose treatment. In addition to supporting a 'once-and-done' approach to the reduction of low-density lipoprotein cholesterol and the treatment of atherosclerotic cardiovascular disease (the leading cause of death worldwide7), our results provide a proof-of-concept for how CRISPR base editors can be productively applied to make precise single-nucleotide changes in therapeutic target genes in the liver, and potentially in other organs.MusunuruKiranK0000-0003-3298-0368Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.ChadwickAlexandra CACVerve Therapeutics, Cambridge, MA, USA.MizoguchiTaijiTVerve Therapeutics, Cambridge, MA, USA.GarciaSara PSP0000-0003-3312-6454Verve Therapeutics, Cambridge, MA, USA.DeNizioJamie EJEVerve Therapeutics, Cambridge, MA, USA.ReissCaroline WCW0000-0002-6385-1879Verve Therapeutics, Cambridge, MA, USA.WangKuiKVerve Therapeutics, Cambridge, MA, USA.IyerSowmyaSVerve Therapeutics, Cambridge, MA, USA.DuttaChaitaliCVerve Therapeutics, Cambridge, MA, USA.ClendanielVictoriaV0000-0002-2969-4443Verve Therapeutics, Cambridge, MA, USA.AmaonyeMichaelM0000-0001-6683-2545Verve Therapeutics, Cambridge, MA, USA.BeachAaronAVerve Therapeutics, Cambridge, MA, USA.BerthKathleenKVerve Therapeutics, Cambridge, MA, USA.BiswasSouvikSVerve Therapeutics, Cambridge, MA, USA.BraunMaurine CMCVerve Therapeutics, Cambridge, MA, USA.ChenHuei-MeiHMVerve Therapeutics, Cambridge, MA, USA.ColaceThomas VTVVerve Therapeutics, Cambridge, MA, USA.GaneyJohn DJDVerve Therapeutics, Cambridge, MA, USA.GangopadhyaySoumyashree ASAVerve Therapeutics, Cambridge, MA, USA.GarrityRyanR0000-0002-5015-4505Verve Therapeutics, Cambridge, MA, USA.KasiewiczLisa NLNVerve Therapeutics, Cambridge, MA, USA.LavoieJenniferJVerve Therapeutics, Cambridge, MA, USA.MadsenJames AJAVerve Therapeutics, Cambridge, MA, USA.MatsumotoYuriYVerve Therapeutics, Cambridge, MA, USA.MazzolaAnne MarieAMVerve Therapeutics, Cambridge, MA, USA.NasrullahYusuf SYSVerve Therapeutics, Cambridge, MA, USA.NnejiJosephJVerve Therapeutics, Cambridge, MA, USA.RenHuilanHVerve Therapeutics, Cambridge, MA, USA.SanjeevAthulA0000-0003-4089-5315Verve Therapeutics, Cambridge, MA, USA.ShayMadeleineMVerve Therapeutics, Cambridge, MA, USA.StahleyMary RMRVerve Therapeutics, Cambridge, MA, USA.FanSteven H YSHYAcuitas Therapeutics, Vancouver, British Columbia, Canada.TamYing KYKAcuitas Therapeutics, Vancouver, British Columbia, Canada.GaudelliNicole MNM0000-0001-8608-4855Beam Therapeutics, Cambridge, MA, USA.CiaramellaGiuseppeGBeam Therapeutics, Cambridge, MA, USA.StolzLeslie ELEVerve Therapeutics, Cambridge, MA, USA.MalyalaPadmaPVerve Therapeutics, Cambridge, MA, USA.ChengChristopher JCJVerve Therapeutics, Cambridge, MA, USA.RajeevKallanthottathil GKGVerve Therapeutics, Cambridge, MA, USA.RohdeEllenEVerve Therapeutics, Cambridge, MA, USA.BellingerAndrew MAMVerve Therapeutics, Cambridge, MA, USA.KathiresanSekarS0000-0002-3711-7101Verve Therapeutics, Cambridge, MA, USA. skathiresan@vervetx.com.engJournal ArticleResearch Support, Non-U.S. Gov't20210519
EnglandNature04104620028-08360Cholesterol, LDLEC 3.4.21.-Proprotein Convertase 9JAC85A2161AdenineIMNat Rev Drug Discov. 2021 Jul;20(7):506. doi: 10.1038/d41573-021-00093-934035481Nat Rev Genet. 2021 Aug;22(8):479. doi: 10.1038/s41576-021-00382-434045716Nat Rev Cardiol. 2021 Aug;18(8):541. doi: 10.1038/s41569-021-00581-w34089000Nat Rev Gastroenterol Hepatol. 2021 Sep;18(9):597-598. doi: 10.1038/s41575-021-00491-934285418Nature. 2022 Jul;607(7920):647. doi: 10.1038/d41586-022-01951-135840676AdeninemetabolismAnimalsCRISPR-Cas SystemsCells, CulturedCholesterol, LDLbloodFemaleGene EditingHepatocytesmetabolismHumansLiverenzymologyLoss of Function MutationMacaca fascicularisbloodgeneticsMaleMiceMice, Inbred C57BLModels, AnimalMutagenesis, Site-DirectedProprotein Convertase 9bloodgeneticsmetabolismTime Factors
202012620214112021520632202152160202110260ppublish3401208210.1038/s41586-021-03534-y10.1038/s41586-021-03534-yJinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).22745249628614810.1126/science.1225829Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).26422227463822010.1016/j.cell.2015.09.038Strecker, J. et al. Engineering of CRISPR–Cas12b for human genome editing. Nat. Commun. 10, 212 (2019).30670702634293410.1038/s41467-018-08224-4Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).27096365487337110.1038/nature17946Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).29160308572655510.1038/nature24644Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).3205159810.1038/s41586-020-1978-58992613GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).10.1016/S0140-6736(18)32203-7Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).31634902690707410.1038/s41586-019-1711-4Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).24681508415775710.1038/nbt.2884Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).24916110413474910.1161/CIRCRESAHA.115.304351Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).29131148590166810.1038/nbt.4005Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).2949026210.1016/j.celrep.2018.02.014Chadwick, A. C., Wang, X. & Musunuru, K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol. 37, 1741–1747 (2017).28751571557063910.1161/ATVBAHA.117.309881Ryu, S. M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).2970263710.1038/nbt.4148Rossidis, A. C. et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat. Med. 24, 1513–1518 (2018).30297903624968510.1038/s41591-018-0184-6Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).1273069710.1038/ng1161Cohen, J. C., Boerwinkle, E., Mosley, T. H., Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).1655452810.1056/NEJMoa054013Rao, A. S. et al. Large-scale phenome-wide association study of PCSK9 variants demonstrates protection against ischemic stroke. Circ. Genom. Precis. Med. 11, e002162 (2018).29997226605002710.1161/CIRCGEN.118.002162Zhao, Z. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79, 514–523 (2006).16909389155953210.1086/507488Hooper, A. J., Marais, A. D., Tanyanyiwa, D. M. & Burnett, J. R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a southern African population. Atherosclerosis 193, 445–448 (2007).1698983810.1016/j.atherosclerosis.2006.08.039Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).2830638910.1056/NEJMoa1615758Brandts, J. & Ray, K. K. Low density lipoprotein cholesterol-lowering strategies and population health: time to move to a cumulative exposure model. Circulation 141, 873–876 (2020).3195559910.1161/CIRCULATIONAHA.119.043406Choudhry, N. K. et al. Full coverage for preventive medications after myocardial infarction. N. Engl. J. Med. 365, 2088–2097 (2011).2208079410.1056/NEJMsa1107913Rodriguez, F. et al. Association of statin adherence with mortality in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 4, 206–213 (2019).30758506643955210.1001/jamacardio.2018.4936Hines, D. M., Rane, P., Patel, J., Harrison, D. J. & Wade, R. L. Treatment patterns and patient characteristics among early initiators of PCSK9 inhibitors. Vasc. Health Risk Manag. 14, 409–418 (2018).30573963629224310.2147/VHRM.S180496Zafrir, B., Egbaria, A., Stein, N., Elis, A. & Saliba, W. PCSK9 inhibition in clinical practice: treatment patterns and attainment of lipid goals in a large health maintenance organization. J. Clin. Lipidol. 15, 202–211.e2 (2021).3324371710.1016/j.jacl.2020.11.004Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).3228458610.1038/s41587-020-0491-6Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR–Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).26121415472944210.1038/nbt.3290Conway, A. et al. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Mol. Ther. 27, 866–877 (2019).30902585645354710.1016/j.ymthe.2019.03.003Villiger, L. et al. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat. Biomed. Eng. 5, 179–189 (2021).3349563910.1038/s41551-020-00671-z7610981Petri, K. et al. Global-scale CRISPR gene editor specificity profiling by ONE-seq identifies population-specific, variant off-target effects. Preprint at https://doi.org/10.1101/2021.04.05.438458 (2021).Liang, P. et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 67 (2019).30622278632512610.1038/s41467-018-07988-zKim, D., Kim, D. E., Lee, G., Cho, S. I. & Kim, J. S. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430–435 (2019).3083365810.1038/s41587-019-0050-1Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).30995674665734310.1038/s41586-019-1161-zZhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).3118156710.1038/s41586-019-1314-0Wang, L. et al. Long-term stable reduction of low-density lipoprotein in nonhuman primates following in vivo genome editing of PCSK9. Mol. Ther.  https://doi.org/10.1016/j.ymthe.2021.02.020 (2021).Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).3029790410.1038/s41591-018-0209-1Song, C. Q. et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 4, 125–130 (2020).3174076810.1038/s41551-019-0357-8Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).33408413787220010.1038/s41586-020-03086-7Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).30809026653391610.1038/s41587-019-0032-3Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).21903629319857310.1093/bioinformatics/btr507Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).29762716603090810.1093/nar/gky354Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).10.1002/0471250953.bi1110s43Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).2310488610.1093/bioinformatics/bts635Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).25516281430204910.1186/s13059-014-0550-8Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).24695404410359010.1093/bioinformatics/btu170Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).22388286332238110.1038/nmeth.1923Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).19505943272300210.1093/bioinformatics/btp352Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).20110278283282410.1093/bioinformatics/btq033Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).24463181401670710.1093/bioinformatics/btu048