Environmental pH influences cell growth and differentiation. In the dimorphic yeast , neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear. Here, we show that the pH-responsive transcription factor Rim101 (YlRim101) is a major regulator of alkaline-induced filamentation, since the deletion of Yl severely impaired filamentation at alkaline pH, whereas the constitutively active Yl mutant mildly induced filamentation at acidic pH. YlRim101 controls the expression of the majority of alkaline-regulated cell wall protein genes. One of these, the cell surface glycosidase gene Yl, plays a critical role in growth, cell wall function, and filamentation at alkaline pH. This finding suggests that YlRim101 promotes filamentation at alkaline pH via controlling the expression of these genes. We also show that, in addition to YlRim101, the Msn2/Msn4-like transcription factor Mhy1 is highly upregulated at alkaline pH and is essential for filamentation. However, unlike YlRim101, which specifically regulates alkaline-induced filamentation, Mhy1 regulates both alkaline- and glucose-induced filamentation, since the deletion of abolished them both, whereas the overexpression of induced strong filamentation irrespective of the pH or the presence of glucose. Finally, we show that YlRim101 and Mhy1 positively coregulate seven cell wall protein genes at alkaline pH, including Yl and five cell surface adhesin-like genes, three of which appear to promote filamentation. Together, these results reveal a conserved role of YlRim101 and a novel role of Mhy1 in the regulation of alkaline-induced filamentation in The regulatory mechanism that governs pH-regulated filamentation is not clear in dimorphic fungi except in Here, we investigated the regulation of alkaline pH-induced filamentation in , a dimorphic yeast distantly related to Our results show that the transcription factor YlRim101 and the Msn2/Msn4-like transcription factor Mhy1 are the major regulators that promote filamentation at alkaline pH. They control the expression of a number of cell wall protein genes important for cell wall organization and filamentation. Our results suggest that the Rim101/PacC homologs play a conserved role in pH-regulated filamentation in dimorphic fungi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265631 | PMC |
http://dx.doi.org/10.1128/mSphere.00179-21 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia. Electronic address:
We tested the effects of galactoglucomannan oligosaccharides (GGMOs) and/or cadmium (Cd) on peroxidase activity and the proteome in maize (Zea mays L.) roots and leaves. Our previous work confirmed that GGMOs ameliorate the symptoms of Cd stress in seedlings.
View Article and Find Full Text PDFPlant Physiol
January 2025
College of Horticulture, China Agricultural University, Beijing 100193, China.
Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat.
View Article and Find Full Text PDFSci Adv
January 2025
Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.
View Article and Find Full Text PDFJ Intensive Med
October 2024
Intensive Care Unit, Hospital Morales Meseguer, Murcia, Spain.
Recently, there has been growing interest in knowing the best hygrometry level during high-flow nasal oxygen and non-invasive ventilation (NIV) and its potential influence on the outcome. Various studies have shown that breathing cold and dry air results in excessive water loss by nasal mucosa, reduced mucociliary clearance, increased airway resistance, reduced epithelial cell function, increased inflammation, sloughing of tracheal epithelium, and submucosal inflammation. With the Coronavirus Disease 2019 pandemic, using high-flow nasal oxygen with a heated humidifier has become an emerging form of non-invasive support among clinicians.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!