Evaluation of DGT and DGT-PROFS modeling approach to estimate desorption kinetics of Cs in soils.

J Environ Radioact

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, LR2T, Cadarache, France. Electronic address:

Published: September 2021

The aim of this paper is to assess the suitability of DGT to extract kinetic rates of desorption of cesium (Cs) from soils. For this purpose, laboratory experiments with a natural soil spiked with Cs were carried out under three different contamination conditions, reflecting either an increase in Cs contamination level or an ageing of the contamination within the soil. The experimental results, i.e. the Cs accumulation kinetics onto DGT probes were interpreted by the DGT-PROFS model. The latter calculates the partitioning of Cs between two particulate pools, describing weak and strong interactions respectively, as well as kinetic rates describing exchange reactions. Experimental conditions did not show any major impact on desorption rates, suggesting that desorption kinetics were not significantly affected by contamination level and ageing. Instead, the distribution of Cs among weak and strong sites was shown to be the predominant factor governing the differences observed in the remobilization of Cs to porewater among experimental conditions. The DGT technique combined with the DGT-PROFS modelling approach was proved to be efficient in estimating desorption kinetic rates of Cs in soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2021.106646DOI Listing

Publication Analysis

Top Keywords

kinetic rates
12
desorption kinetics
8
contamination level
8
level ageing
8
weak strong
8
experimental conditions
8
desorption
5
evaluation dgt
4
dgt dgt-profs
4
dgt-profs modeling
4

Similar Publications

The kinetics of aqueous thiolated arsenic oxidation.

J Hazard Mater

January 2025

Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada. Electronic address:

Thiolated arsenic (As) compounds have been identified in various natural and engineered environments worldwide and are important for the biogeochemical cycling of As, yet quantitative data regarding their stability and transformation rates remains scarce. This study investigates the oxidation kinetics of mono-, di-, and tri-thioarsenate at varying pH, Fe, and (thio-)As concentrations in the aqueous phase. Experiments conducted over four weeks revealed that all thioarsenates were oxidized faster at lower pH, with rates of up to several μmoles/L/d at a pH of 3.

View Article and Find Full Text PDF

Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.

View Article and Find Full Text PDF

Hydrolysis Reactions of p-Nitrophenyl Trifluoroacetate and S-Ethyl Trifluorothioacetate.

Molecules

January 2025

Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL 32224, USA.

The formation of water structures can provide significant benefits in organic reactions, stabilizing charge and lowering activation energies. Hydrolysis reactions will frequently rely on water networks to accomplish these goals. Here, we used computational chemistry and experimental kinetics to investigate a model thioester molecule S-ethyl trifluorothioacetate, and extended work on a previously characterized ester p-nitrophenyl trifluoroacetate.

View Article and Find Full Text PDF

Accelerated photooxidation of salicylic acid (SA) was performed using UV radiation and hydrogen peroxide. HPLC-MS analysis showed that the primary intermediates are 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, pyrocatechol, and phenol. Deeper oxidation leads to low molecular weight aliphatic acids, such as maleic, fumaric, and glyoxylic.

View Article and Find Full Text PDF

Classifying Food Items During an Eating Occasion: A Machine Learning Approach with Slope Dynamics for Windowed Kinetic Data.

Foods

January 2025

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy.

Background: Wearable devices equipped with a range of sensors have emerged as promising tools for monitoring and improving individuals' health and lifestyle.

Objectives: Contribute to the investigation and development of effective and reliable methods for dietary monitoring based on raw kinetic data generated by wearable devices.

Methods: This study uses resources from the NOTION study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!