MerTK inhibits the activation of the NLRP3 inflammasome after subarachnoid hemorrhage by inducing autophagy.

Brain Res

Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, China; Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. Electronic address:

Published: September 2021

AI Article Synopsis

Article Abstract

The NLR family pyrin domain-containing 3 (NLRP3) multiprotein complex is associated with neuroinflammation and poor prognosis after subarachnoid hemorrhage (SAH). Accumulating evidence shows that Mer tyrosine kinase (MerTK) alleviates inflammatory responses via a negative feedback mechanism. However, the contribution and function of MerTK in SAH remain to be determined. In this study, we explored the role of MerTK during microglial NLRP3 inflammasome activation and evaluated its contribution to the outcome of SAH in mice. Activating MerTK with growth arrest-specific 6 (Gas6) alleviated brain edema, neuronal degeneration and neurological deficits after SAH by regulating neuroinflammation. Gas6 did not change the mRNA levels of Nlrp3 or Casp1 but decreased the protein expression of NLRP3, cleaved caspase1 (p20), interleukin-1β and interleukin-18. Furthermore, Gas6 increased the expression of Beclin1, the ratio of LC3-II/LC3-I and the level of autophagic flux. Inhibiting autophagy with 3-MA reversed the inhibition of NLRP3 inflammasome activation and diminished the neuroprotective effects of Gas6. Thus, MerTK activation may exert protective effects by limiting neuroinflammation and promoting neurological recovery after SAH via autophagy induction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2021.147525DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
subarachnoid hemorrhage
8
inflammasome activation
8
mertk
6
nlrp3
6
sah
5
mertk inhibits
4
activation
4
inhibits activation
4
activation nlrp3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!