Polyaniline/Carbon Dots Composite as a Highly Efficient Metal-Free Dual-Functional Photoassisted Electrocatalyst for Overall Water Splitting.

ACS Appl Mater Interfaces

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China.

Published: June 2021

Photoassisted electrocatalytic (P-EC) water splitting for H production has received much attention. Here, we report a metal-free bifunctional photoassisted catalyst of a polyaniline/carbon dots (PANI/CDs) composite for overall water splitting. In a neutral electrolyte, under visible light, the overpotentials of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) for PANI/CDs/NF are reduced by 150 and 65 mV to reach the current densities of 30 and 20 mA cm, respectively. In a full water-splitting cell, under visible light, the current density is 13.27 mA cm at 2.0 V, which increases by 62.8% compared with that under the dark conditions (8.15 mA cm). The transient photovoltage (TPV) tests were used to study the light-induced effects on half-reactions of water splitting, as well as the charge-transfer kinetic characteristics at the catalyst interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c04386DOI Listing

Publication Analysis

Top Keywords

water splitting
16
polyaniline/carbon dots
8
visible light
8
evolution reaction
8
dots composite
4
composite highly
4
highly efficient
4
efficient metal-free
4
metal-free dual-functional
4
dual-functional photoassisted
4

Similar Publications

We employed machine learning (ML) techniques combined with potential-dependent photoelectrochemical impedance spectroscopy (pot-PEIS) to gain deeper insights into the charge transport mechanisms of hematite (α-FeO) photoanodes. By the Shapley Additive exPlanations (SHAP) analysis from the ML model constructed from a small data set (dozens of samples) of electrical parameters obtained from pot-PEIS and the PEC performance, we identified the dominant factors influencing the electron transport to the back contact in the bulk and hole transfer to a solution at the hematite/electrolyte interface. The results revealed that shallow defect states significantly enhance electron transport, while deep defect states impede it, and also one of the surface states enhances the hole transfer to the electrolyte solution.

View Article and Find Full Text PDF

Far-Ultraviolet Plexciton Formation in Water-Covered Indium Clusters.

J Phys Chem Lett

January 2025

Department of Nature and Environment, Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan.

In this work, we study the plexciton in the far-ultraviolet region formed between indium nanoclusters and water molecules. The indium clusters are fabricated on graphene under ultrahigh vacuum conditions and show a strong localized surface plasmon polariton (LSP) absorption band at 6-7 eV. Adsorption of water molecules onto the clusters at 115 K induces a band splitting larger than 1 eV, indicating a strong coupling between the LSP and water 4a ← 1b transition.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Temperature-Dependent Water Oxidation Kinetics: Implications and Insights.

ACS Cent Sci

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.

As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps.

View Article and Find Full Text PDF

Deep water vetulicolians from the lower Cambrian of China.

PeerJ

January 2025

Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.

Vetulicolians are an enigmatic phylum of extinct Cambrian marine invertebrates. They are particularly diverse in the Chengjiang Biota of China, but representatives have been recovered from other Fossil-Lagerstätten (Cambrian Stage 3-Drumian). These organisms are characterized by a bipartite body, which is split into an anterior section and a posterior segmented section connected by a narrow constriction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!