Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the treatment of cardiovascular diseases, vascular scaffold materials play an extremely important role. The appropriate substrate chemistries and 15 dynes/cm physiological fluid shear stress (FSS) are both required to ensure normal physiological activity of human umbilical vein endothelial cells (HUVECs). The present study reported the collective influence of substrate chemistries and FSS on HUVECs in the sense of its biological functions. The CH , NH , and OH functional groups were adopted to offer a variety of substrate chemistries on glass slides by the technology of self-assembled monolayers, whereas FSS was generated by a parallel-plate fluid flow system. Substrate chemistries on its own by no means had noticeable effects on eNOS, ATP, NO, and PGI expressions, while FSS stimuli enhanced their production. While substrate chemistries, as well as FSS, were both exerted, the releases of ATP, NO, and PGI were dependent on substrate chemistries. Study of F-actin organization and focal adhesions (FAs) formation of HUVECs before FSS exposure proves that F-action organization and FAs formation followed similar chemistry-dependence. Hereby proposed a feasible mechanism, that is, the F-actin organization and FAs formation of HUVECs are controlled by substrate chemistries, further advancing the modulation of FSS-triggered responses of HUVECs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.11632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!