Dermal fibroblast cells interactions with single and triple bacterial-species biofilms.

Mol Biol Rep

Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.

Published: April 2021

Polymicrobial biofilm leads to wound healing delay. We set up an in vitro co-culture model of single- and triple-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis with dermal fibroblast to assess the fibroblast response against to the different biofilms. Scratch and viability assays and biofilm cell quantifications were performed by WST-1, CLSM and plating method, respectively. Quorum sensing-related gene expression levels in P. aeruginosa and E. faecalis were analysed by reverse-transcriptase PCR. The immune responses of cells against S. aureus, P. aeruginosa and E. faecalis biofilms were measured by cytokine and matrix metalloproteinase analyzes. The influence of biofilm soluble factors on fibroblasts was also determined. After 24 h, triple-species biofilm cells caused the removal of the fibroblasts from the surfaces indicating the negative synergistic effect of three species. After co-cultures, twenty-five cytokines were significantly increased in fibroblast cells compared to control. Compared to other strains, the most important cytokine, chemokine and growth factors increased was observed in P. aeruginosa co-cultures with fibroblast. While the expressions of fsrB and gelE genes were significantly upregulated in E. faecalis biofilm cells cultured with fibroblast cells, no significant difference was observed in P. aeruginosa. The wound healing and cell growth of fibroblasts were disrupted more aggressively in the presence of P. aeruginosa and triple-species biofilm cells. P. aeruginosa generally induced a stronger immune response in the fibroblasts than E. faecalis and S. aureus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-021-06391-0DOI Listing

Publication Analysis

Top Keywords

fibroblast cells
12
biofilm cells
12
dermal fibroblast
8
wound healing
8
aeruginosa faecalis
8
triple-species biofilm
8
observed aeruginosa
8
cells
7
aeruginosa
7
biofilm
6

Similar Publications

Objectives: Echinacoside (ECH) is an anti-fibrotic phenylethanoid glycoside derived from the plant that protects against cardiac dysfunction by mitigating apoptosis, oxidative stress, and fibrosis. Nevertheless, ECH's precise function and mechanisms in addressing cardiac fibrosis are still not fully understood.

Materials And Methods: In our current investigation, we induced cardiac fibrosis in mice by administering Angiotensin II (Ang II) and subsequently assessed the effects of ECH treatment four weeks post-fibrosis induction.

View Article and Find Full Text PDF

The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.

View Article and Find Full Text PDF

Purpose: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment.

View Article and Find Full Text PDF

Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering.

Front Bioeng Biotechnol

January 2025

Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.

Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced only in the mouse.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!