This study analyzed the difference between biofilm and planktonic Brucella abortus using metabolomics and proteomics. Brucella abortus was cultured in different media to induce Brucella abortus biofilm formation and planktonic cells, followed by metabolomics and proteomics analyses for these two samples. Significant differential metabolites were identified, followed by KEGG pathway analysis. Differentially expressed proteins were identified, followed by subcellular localization, GO annotation, and KEGG pathway enrichment. Additionally, a correlation analysis of metabolomics and proteomics was performed. Metabolomics analysis showed 7682 positive and 4433 negative metabolites, including 188 positive and 117 negative significant differential metabolites. These differential metabolites were enriched in fatty acid/unsaturated fatty acid biosynthesis and linoleic acid metabolism. Proteomics analysis revealed 1759 proteins, including 486 differentially expressed proteins, which were enriched in various metabolic and degradation-related pathways. Subcellular localization showed that 74.3% of the differential proteins were cytoplasmic proteins. Correlation analysis showed that 1-palmitoyl-2-oleoyl-phosphatidylglycerol had the most significant correlations with proteins, followed by cytosine. Both metabolites correlated with the protein Q57EI7 (RbsB-1, ribose ABC transporter). One common pathway, fatty acid biosynthesis, was identified by both proteomics and metabolomics analyses that involved the metabolites, oleic acid, and protein Q57DK3 (biotin carboxylase). There were metabolomic and proteomic differences between Brucella abortus biofilm and planktonic cells, and these results provide novel insights into the biofilm-forming process of Brucella abortus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-021-00788-7 | DOI Listing |
Eur J Public Health
January 2025
National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran.
The purpose of this study was to assess the prevalence of zoonotic bacteria, including Coxiella burnetii, Bartonella spp., Rickettsia spp., Brucella spp.
View Article and Find Full Text PDFActa Trop
January 2025
Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
Introduction: Brucellosis is still a significant emerging threat to public health, as it can infect humans, wild, domestic animals, and livestock. Hence, the current study aims to determine the frequency of canine brucellosis (CB), its relationship with clinical findings and reproductive disorders in kennel and farm dogs, and its importance on public health.
Materials And Methods: From January 2022 to December 2023, a total of 150 blood samples were taken from 100 adult dogs in breeding kennels and 50 shepherd dogs in breeding farms in Kerman, Iran.
Int Immunopharmacol
January 2025
College of Animal Science and Technology, Shihezi University, Shihezi, China. Electronic address:
Pyroptosis, which is accompanied by inflammatory responses, is critical for pathogen clearance. However, the mechanism through which Brucella evades host pyroptosis remains unclear. The transcriptional regulator ArsR6 maintains bacterial intracellular homeostasis and possibly influences host cell death.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea.
Our preliminary data using bone marrow-derived macrophages (BMDMs) collected from ICR mice treated with anti-sirtuin (anti-SIRT) 1 antibody showed that uptake was significantly attenuated. We then further investigated the effect of an inhibitor of SIRT1/2, cambinol, in the progression of . The in vitro results using RAW264.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
Effective management of brucellosis in human populations is closely tied to controlling the disease in domestic livestock. This study focused on identifying determinants of brucellosis prevalence in mixed industrial dairy and beef cattle farms within Isfahan Province, Iran. Employing a case control design, we compared 32 ranches with documented brucellosis within the previous year (12 months) to 38 farms with no brucellosis during the same timeframe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!