Aims: Coronavirus disease of 2019 (COVID-19) has rapidly become a worldwide pandemic. Many clinical trials have been initiated to fight the disease. Among those, hydroxychloroquine and azithromycin had initially been suggested to improve clinical outcomes. Despite any demonstrated beneficial effects, they are still in use in some countries but have been reported to prolong the QT interval and induce life-threatening arrhythmia. Since a significant proportion of the world population may be treated with such COVID-19 therapies, evaluation of the arrhythmogenic risk of any candidate drug is needed.

Methods And Results: Using the O'Hara-Rudy computer model of human ventricular wedge, we evaluate the arrhythmogenic potential of clinical factors that can further alter repolarization in COVID-19 patients in addition to hydroxychloroquine (HCQ) and azithromycin (AZM) such as tachycardia, hypokalaemia, and subclinical to mild long QT syndrome. Hydroxychloroquine and AZM drugs have little impact on QT duration and do not induce any substrate prone to arrhythmia in COVID-19 patients with normal cardiac repolarization reserve. Nevertheless, in every tested condition in which this reserve is reduced, the model predicts larger electrocardiogram impairments, as with dofetilide. In subclinical conditions, the model suggests that mexiletine limits the deleterious effects of AZM and HCQ.

Conclusion: By studying the HCQ and AZM co-administration case, we show that the easy-to-use O'Hara-Rudy model can be applied to assess the QT-prolongation potential of off-label drugs, beyond HCQ and AZM, in different conditions representative of COVID-19 patients and to evaluate the potential impact of additional drug used to limit the arrhythmogenic risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8135857PMC
http://dx.doi.org/10.1093/europace/euab043DOI Listing

Publication Analysis

Top Keywords

covid-19 patients
12
coronavirus disease
8
disease 2019
8
hydroxychloroquine azithromycin
8
arrhythmogenic risk
8
hcq azm
8
covid-19
5
azm
5
modelling sudden
4
sudden cardiac
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!