High-performance triiodide reduction reaction (IRR) catalysts in dye-sensitized solar cells (DSSCs) and hydrogen evolution reaction (HER) catalysts in electrochemical water splitting are extremely compelling for renewable energy conversion and storage. The best IRR and HER catalysts generally rely on the use of noble metal platinum (Pt), which suffers obstacles in real-world implementation. The rational design of efficient bifunctional IRR and HER catalysts based on inexpensive and earth-abundant elements to replace scarce Pt could enable low-cost photoelectric conversion and hydrogen production but is challenging and rarely reported. Herein, we present a bifunctional NiFeCoW@NC hybrid with the unique architecture of WC loaded on the in situ formed carbon nanotubes embedded with Co-doped FeNi nanoparticles based on the anisotropic integration design principle, which operates efficiently for DSSCs and hydrogen evolution. The assembled DSSCs using the designed multimetal-based NiFeCoW@NC counter electrode delivered a high power conversion efficiency of 6.92% and long-term stability superior to bimetal-based NiFe@NC, CoW@NC, and Pt counterparts. It also exhibited eminent hydrogen evolution performance with a low overpotential of 127.8 mV to drive a 10 mA cm current density, a Tafel slope of 60.4 mV dec, and satisfactory durable stability in 0.5 M HSO. This work provides a design principle for low-cost and highly active bifunctional catalysts to replace Pt for DSSCs and hydrogen evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c06032 | DOI Listing |
Langmuir
January 2025
Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India.
Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laboratory for Structural Engineering and Sustainable Catalysis, Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
The upsurging of cost-effective electrocatalysts through the operando electro-oxidation approaches holds great promise for the scalable production of green energy in the pursuit of energy sustainability. This work introduces an operando electro-oxidation reconstitution strategy in producing a smart electrocatalyst, cobalt "oxyhydroxide" derived from a newly designed 2D cobalt(II) metal-organic framework (-) directly grown on nickel foam (NF), . The electrocatalyst, , exhibits an outstanding overpotential of 76 mV for the hydrogen evolution reaction and 336 mV for the oxygen evolution reaction to achieve a current density of 10 mA/cm with remarkable Faradaic efficiencies of 97.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Electrocatalytic dehalogenative deuteration is a sustainable method for precise deuteration, whereas its Faradaic efficiency (FE) is limited by a high overpotential and severe D evolution reaction (DER). Here, Cu site-adjusted adsorption and crown ether-reconfigured interfacial DO are reported to cooperatively increase the FE of dehalogenative deuteration up to 84% at -100 mA cm. Cu sites strengthen the adsorption of aryl iodides, promoting interfacial mass transfer and thus accelerating the kinetics toward dehalogenative deuteration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
Controlled synthesis of faceted nanoparticles on surfaces without explicit use of ligands has gained attention due to their promising applications in electrocatalysis and chemical sensing. Electrodeposition is a desirable method; however, precise control over their size, spatial distribution, and morphology requires extensive optimization. Here, we report the spatially resolved synthesis of shape-controlled Pt nanoparticles and fast screening of synthesis conditions in scanning electrochemical cell microscopy (SECCM) with pulse potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!