A multifunctional nanoplatform (1), MnCO@TPP@C-TiO2, which consists of a carrier of carbon-doped TiO2 nanoparticles with surface covalent functionalization of manganese carbonyls and a directing group of triphenylphosphine, was prepared for mitochondria-targeted carbon monoxide (CO) delivery combined with photodynamic therapy (PDT). MnCO@TPP@C-TiO2 selectively localized in the mitochondria of HeLa cells where the overexpressed-H2O2 triggered CO release resulting in mitochondrial damage. And singlet oxygen species generated upon 808 nm near infrared light irradiation further destroyed the mitochondria and induced cancer cells apoptosis. Cytotoxicity assays revealed that the nanoplatform with mitochondria-targeted CO delivery and PDT exhibited the highest lethality against cancer cells in comparison with all the other control samples tested, and it showed good dark biocompatibility with normal cells that express low H2O2 levels. This work may provide new insights into combining CO-based gas therapy with traditional PDT for efficient cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb00478fDOI Listing

Publication Analysis

Top Keywords

mitochondria-targeted carbon
8
carbon monoxide
8
monoxide delivery
8
delivery combined
8
singlet oxygen
8
light irradiation
8
cancer cells
8
combined singlet
4
oxygen production
4
production single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!