Climate-Simulated culturing suggests high microalgal biomass and oil productivities in most of the South American continent.

Biotechnol J

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas, Mar del Plata, Argentina.

Published: August 2021

Background: Current production costs of microalgal biomass indicate that only highly-productive cultivation facilities will approach commercial feasibility. Geographical site selection for siting those facilities is critical for achieving target productivities. The aim of this study was to provide a semi-empirical estimation of microalgal biomass and lipids productivity in South America.

Methods And Results: Simulated-climate was programed in environmental photobioreactors (Phenometrics) for a simulation of cultivation in open raceway ponds at different geographical sites. The mean annual South American biomass productivity of 20-cm deep ponds was 12 ± 4 g · m · d . The most productive regions were clustered in the subtropical and tropical regions of the continent. Fortaleza (Brazil) showed a low seasonality and a high annual mean productivity of 23 g · m · d in 5-cm deep ponds, closely approaching the productivity target. Lipids accumulation and productivity in Fortaleza showed a high microalgal oil accumulation up to 46% (w/w) and a maximum oil productivity of 5 g · m · d for biomass containing around 20% lipids (w/w).

Conclusion: This study provides the first semi-empirical estimation of microalgal productivity in South America and supports a high potential of a vast region of the continent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.202100067DOI Listing

Publication Analysis

Top Keywords

microalgal biomass
12
high microalgal
8
south american
8
semi-empirical estimation
8
estimation microalgal
8
productivity south
8
deep ponds
8
productivity
7
microalgal
5
biomass
5

Similar Publications

Co-metabolism of Norfloxacin by Chlorella pyrenoidosa: Carbon source effects, biotransformation mechanisms, and key driving genes.

J Hazard Mater

December 2024

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.

View Article and Find Full Text PDF

The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.

View Article and Find Full Text PDF

Microalgae for bioremediation: advances, challenges, and public perception on genetic engineering.

BMC Plant Biol

December 2024

Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain.

The increase in the global population and industrial activities has led to an extensive use of water, the release of wastewater, and overall contamination of the environment. To address these issues, efficient treatment methods have been developed to decrease wastewater nutrient content and contaminants. Microalgae are a promising tool as a sustainable alternative to traditional wastewater treatment.

View Article and Find Full Text PDF

This study presents a theoretical and mathematical analysis and modelling of the emerging microalgal membrane photobioreactors (M-MPBRs) for wastewater treatment. A set of mathematical models was developed to predict the biological performances of M-MPBRs. The model takes into account the effects of hydraulic retention time (HRT), solid retention time (SRT), and the N/P ratio of influent on the biological performance of M-MPBRs, such as microalgal biomass production and nutrient (N and P) removals.

View Article and Find Full Text PDF

Enhancing astaxanthin accumulation in immobilized Haematococcus pluvialis via alginate hydrogel membrane.

Int J Biol Macromol

December 2024

State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:

Immobilized cultivation is anticipated to be effective for enhancing both biomass and astaxanthin accumulation in Haematococcus pluvialis (H. pluvialis). A novel fabrication method of alginate hydrogel membrane (AHM) was introduced for immobilized cultivation of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!