Tuberculosis, caused by mycobacteria, continues to pose a substantial public health threat. Mycobacteria typically use cholesterol from the membranes of host macrophages as a carbon and energy source. Most genes that control cholesterol degradation are regulated by KstR, which is highly conserved in Mycobacterium tuberculosis and Mycobacterium smegmatis. Through bioinformatic analysis, we found a typical global nitrogen regulator (GlnR)-binding motif (CCGAC-AACAGT-GACAC) in the promoter region of kstR of M. smegmatis, and we determined its binding activity in vitro using electrophoretic mobility shift assays. Using RT-qPCR, we found that nine genes involved in side-chain or sterol-ring oxidation were upregulated in a ΔglnR M. smegmatis strain compared to the WT strain and glnR-complemented strains under nitrogen limitation. ATP assays in macrophages revealed that coordinated GlnR-KstR regulation significantly reduced the viability of M. smegmatis in macrophages. Thus, we found that various genes involved in cholesterol catabolism are regulated by GlnR via KstR in response to environmental nitrogen, and that they further affect the invasive ability of M. smegmatis. These findings revealed a novel regulatory mechanism of cholesterol catabolism, which may be useful in the development of new strategies for controlling tuberculosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.2197DOI Listing

Publication Analysis

Top Keywords

cholesterol catabolism
12
mycobacterium smegmatis
8
genes involved
8
smegmatis
6
cholesterol
5
glnr-mediated regulation
4
kstr
4
regulation kstr
4
kstr controls
4
controls cholesterol
4

Similar Publications

Ergosterol alleviates hepatic steatosis and insulin resistance via promoting fatty acid β-oxidation by activating mitochondrial ACSL1.

Cell Rep

January 2025

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China. Electronic address:

Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity.

View Article and Find Full Text PDF

The objective of this study was to evaluate the therapeutic effects of Chiglitazar combined with Rosa roxburghii Tratt (RRT) in inpatients diagnosed with psychiatric disorders and antipsychotic-induced metabolic syndrome (MetS).100 cases were included and divided into the Siglitazar group (n=50) and the Siglitazar + RRT group (n=50) Anthropometric measurements, lipid and glucose metabolism indicators, inflammatory markers and PANSS scores were assessed at baseline, 8 weeks and 12 weeks post-treatment. Both treatment groups exhibited significant reductions in waist circumference and improvements in lipid profiles and glucose metabolism indicators over the 12-week study period.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases worldwide, with no cure at present. Vitamin D (VD) is a fat-soluble vitamin, which has been recognized as one of the major influencing factors of T2DM. However, the specific relationship between T2DM and VD remains elusive.

View Article and Find Full Text PDF

The disorders of glucose and lipid metabolism contribute to severe diseases, including cardiovascular disease, diabetes, and fatty liver. Here, we identified DNA damage-binding protein 2 (DDB2), an E3 ubiquitin ligase, as a pivotal regulator of lipid metabolism disorders in type II diabetes mellitus (T2DM). A mouse model of T2DM and primary mouse hepatocytes with steatosis were induced.

View Article and Find Full Text PDF

Background: Melittin, a major peptide component of bee venom, has demonstrated promising anti-cancer activity across various preclinical cell models, making it a potential candidate for cancer therapy. However, its molecular mechanisms, particularly in ovarian cancer, remain largely unexplored. Ovarian cancer is a life-threatening gynecological malignancy with poor clinical outcomes and limited treatment options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!