Pattern hair loss (PHL) is a chronic regressive condition of the scalp, where follicular miniaturisation and decreased scalp hair coverage occurs in affected areas. In all PHL cases, there is a measurable progressive shortening of the terminal hair growth duration, along with reduced linear growth rates. In both genders, PHL initially shows an increase in short telogen hairs ≤30 mm in length, reflecting a cycle completion of under 6 months in affected terminal hair follicles. To understand the miniaturisation process, we re-examine the dynamics of miniaturisation and ask the question, "why do miniaturised hair follicles resist treatment?" In the light of recent developments in relation to hair regeneration, we looked back in the older literature for helpful clues "lost to time" and reprise a 1978 Hermann Pinkus observation of an array of elastin deposits beneath the dermal papilla following subsequent anagen/telogen transitions in male balding, originally described by Arao and Perkins who concluded that these changes provide a "morphologic marker of the entire biologic process in the balding scalp." Thus, we have reviewed the role of the elastin-like bodies in hair pathology and we propose that alterations in elastin architecture may contribute to the failure of vellus-like hair reverting back to their terminal status and may indicate a new area for therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290669PMC
http://dx.doi.org/10.1111/exd.14393DOI Listing

Publication Analysis

Top Keywords

hair
10
hair loss
8
terminal hair
8
hair follicles
8
historical "tracks"
4
"tracks" hair
4
hair follicle
4
miniaturisation
4
follicle miniaturisation
4
miniaturisation patterned
4

Similar Publications

MALDI-MSI: A potential game changer in forensic sciences.

Forensic Sci Med Pathol

January 2025

School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.

Matrix-assisted laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) is an analytical technique used for the spatial mapping of drugs, explosives, and organic samples, making it a game-changer in Forensic examination. It detects a wide range of biomolecules in their native state without specific tags, antibodies, labels, and dyes. This review aims to highlight the advancement of MALDI-MSI over time and its impact on Forensic Science due to high-resolution molecular imaging.

View Article and Find Full Text PDF

Background: Uterine fibroids disproportionately affect Black women, and exposure to chemicals from hair relaxers or straighteners ("straighteners") may contribute to fibroid development.

Objectives: We examined the association between straightener use and prevalent young-onset uterine fibroids (diagnosed before age 36 y), as well as incident fibroids (diagnosed age 36-60 y), with a focus on Black women. We also examined differences in associations across birth cohorts as proxies for formulation changes.

View Article and Find Full Text PDF

Background: Griscelli syndrome (GS) is a rare genetic disorder characterized by oculocutaneous albinism and variable immune dysfunction. Among three distinct types of GS, occurring due to different genetic mutations; GS type 1 presents with neurological manifestations, hemophagocytic lymphohistiocytosis (HLH) generally develops in GS type 2, and GS type 3 primarily exhibits oculocutaneous albinism. HLH, a life-threatening condition with excessive immune activation, may occur secondary to various triggers, including infections, and develop in different tissues, as well as in the testis, similar to Erdheim-Chester disease.

View Article and Find Full Text PDF

Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!