In this article, we analyse the usefulness of multidimensional scaling in relation to performing K-means clustering on a dissimilarity matrix, when the dimensionality of the objects is unknown. In this situation, traditional algorithms cannot be used, and so K-means clustering procedures are being performed directly on the basis of the observed dissimilarity matrix. Furthermore, the application of criteria originally formulated for two-mode data sets to determine the number of clusters depends on their possible reformulation in a one-mode situation. The linear invariance property in K-means clustering for squared dissimilarities, together with the use of multidimensional scaling, is investigated to determine the cluster membership of the observations and to address the problem of selecting the number of clusters in K-means for a dissimilarity matrix. In particular, we analyse the performance of K-means clustering on the full dimensional scaling configuration and on the equivalently partitioned configuration related to a suitable translation of the squared dissimilarities. A Monte Carlo experiment is conducted in which the methodology examined is compared with the results obtained by procedures directly applicable to a dissimilarity matrix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11336-021-09757-2 | DOI Listing |
Sci Rep
January 2025
Ministry of Higher Education, Mataria Technical College, Cairo, 11718, Egypt.
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.
View Article and Find Full Text PDFBiophys Chem
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India. Electronic address:
Quantitative characterization of protein conformational landscapes is a computationally challenging task due to their high dimensionality and inherent complexity. In this study, we systematically benchmark several widely used dimensionality reduction and clustering methods to analyze the conformational states of the Trp-Cage mini-protein, a model system with well-documented folding dynamics. Dimensionality reduction techniques, including Principal Component Analysis (PCA), Time-lagged Independent Component Analysis (TICA), and Variational Autoencoders (VAE), were employed to project the high-dimensional free energy landscape onto 2D spaces for visualization.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Sport and Physical Activity Research Centre, Sheffield Hallam University, Olympic Legacy Park, 2 Old Hall Rd, Sheffield S9 3TY, UK.
Our aim was to validate a sacral-mounted inertial measurement unit (IMU) for reconstructing running kinematics and comparing movement patterns within and between runners. IMU data were processed using Kalman and complementary filters separately. RMSE and Bland-Altman analysis assessed the validity of each filtering method against a motion capture system.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing, University, Chongqing, 400044, People's Republic of China.
Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain.
View Article and Find Full Text PDFJ Pediatr
January 2025
Section of Pediatric Pulmonary Medicine and the Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Anschutz School of Medicine.
Objectives: To determine whether airway and parenchymal function identifies subgroups of infants born preterm according to the predominant pulmonary pathophysiology, and whether these subgroups have different risks for respiratory disease during infancy.
Study Design: We prospectively enrolled a cohort of 125 infants born preterm with planned clinical follow-up after NICU discharge. The study included monthly questionnaires for wheeze and visits to a physician or care provider for any respiratory illness.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!