Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The apoptotic, cytotoxic, and cytostatic activities for [10]-gingerol in triple-negative breast cancer cells (TNBCs) were already reported. However, despite these important antitumor activities, the compound has the disadvantage to have a hydrophobic characteristic, hindering in vivo administration. To surpass this issue, in this study we have created a [10]-gingerol-loaded nanoemulsion (10GNE) in order to increase the stability and solubility of the compound. The nanoemulsion was characterized and tested for its cytotoxic, cytostatic, and apoptotic effects on a panel of murine and human TNBC cell lines, as well as non-tumor cells, and compared with a [10]-gingerol-free nanoemulsion (NE) and with [10]-gingerol itself. Except for the murine 4T1.13 cell line, the IC of the free 10G molecule, after 72 h of incubation, was higher in all cell lines tested, both murine and human, demonstrating therefore the efficacy of the 10GNE regarding cytotoxicity. In murine tumor cells, 60 μM 10GNE was able to arrest cell cycle at sub-G0 phase and induce apoptosis, leading to 48% and 78% of total cell death in 4T1.13 and 4T1Br4 murine tumor cells, respectively. This represents an improvement compared to 10G-free molecule that only induced 74% of total apoptosis at 100 μM in 4T1Br4 cells. Taken together, our results show that nanoformulation preserved the [10]-gingerol cytotoxic and cytostatic properties and improved its apoptotic function on murine TNBC cell lines. These data open new perspectives to a more suitable drug-delivery approach for [10]-gingerol for TNBC treatment that should be further demonstrated using in vivo assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-021-02006-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!