Pathologies affect the performance of ECG signals compression.

Sci Rep

Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.

Published: May 2021

The performance of ECG signals compression is influenced by many things. However, there is not a single study primarily focused on the possible effects of ECG pathologies on the performance of compression algorithms. This study evaluates whether the pathologies present in ECG signals affect the efficiency and quality of compression. Single-cycle fractal-based compression algorithm and compression algorithm based on combination of wavelet transform and set partitioning in hierarchical trees are used to compress 125 15-leads ECG signals from CSE database. Rhythm and morphology of these signals are newly annotated as physiological or pathological. The compression performance results are statistically evaluated. Using both compression algorithms, physiological signals are compressed with better quality than pathological signals according to 8 and 9 out of 12 quality metrics, respectively. Moreover, it was statistically proven that pathological signals were compressed with lower efficiency than physiological signals. Signals with physiological rhythm and physiological morphology were compressed with the best quality. The worst results reported the group of signals with pathological rhythm and pathological morphology. This study is the first one which deals with effects of ECG pathologies on the performance of compression algorithms. Signal-by-signal rhythm and morphology annotations (physiological/pathological) for the CSE database are newly published.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131635PMC
http://dx.doi.org/10.1038/s41598-021-89817-wDOI Listing

Publication Analysis

Top Keywords

ecg signals
16
compression algorithms
12
signals
11
compression
9
performance ecg
8
signals compression
8
compression performance
8
effects ecg
8
ecg pathologies
8
pathologies performance
8

Similar Publications

Wearable Solutions Using Physiological Signals for Stress Monitoring on Individuals with Autism Spectrum Disorder (ASD): A Systematic Literature Review.

Sensors (Basel)

December 2024

REMIT (Research on Economics, Management and Information Technologies), IJP (Instituto Jurídico Portucalense), Universidade Portucalense, Rua Dr. António Bernardino de Almeida, 541-619, 4200-072 Porto, Portugal.

Some previous studies have focused on using physiological signals to detect stress in individuals with ASD through wearable devices, yet few have focused on how to design such solutions. Wearable technology may be a valuable tool to aid parents and caregivers in monitoring the emotional states of individuals with ASD who are at high risk of experiencing very stressful situations. However, effective wearable devices for individuals with ASD may need to differ from solutions for those without ASD.

View Article and Find Full Text PDF

Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, often hinder existing models from effectively capturing key information within these complex signals, leading to a bias towards normal classes. To address these challenges, this paper proposes a method for arrhythmia classification based on a multi-branch, multi-head attention temporal convolutional network (MB-MHA-TCN).

View Article and Find Full Text PDF

Arrhythmia Detection by Data Fusion of ECG Scalograms and Phasograms.

Sensors (Basel)

December 2024

Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.

The automatic detection of arrhythmia is of primary importance due to the huge number of victims caused worldwide by cardiovascular diseases. To this aim, several deep learning approaches have been recently proposed to automatically classify heartbeats in a small number of classes. Most of these approaches use convolutional neural networks (CNNs), exploiting some bi-dimensional representation of the ECG signal, such as spectrograms, scalograms, or similar.

View Article and Find Full Text PDF

Security is one of the increasingly significant issues given advancements in technology that harness data from multiple devices such as the internet of medical devices. While protecting data from unauthorized user access, several techniques are used including fingerprints, passwords, and others. One of the techniques that has attracted much attention is the use of human features, which has proven to be most effective because of the difficulties in impersonating human-related features.

View Article and Find Full Text PDF

Arrhythmias are among the diseases with high mortality rates worldwide, causing millions of deaths each year. This underscores the importance of real-time electrocardiogram (ECG) monitoring for timely heart disease diagnosis and intervention. Deep learning models, trained on ECG signals across twelve or more leads, are the predominant approach for automated arrhythmia detection in the AI-assisted medical field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!