Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131707PMC
http://dx.doi.org/10.1038/s41419-021-03808-3DOI Listing

Publication Analysis

Top Keywords

correction hypoxia-induced
4
hypoxia-induced mir-210
4
mir-210 modulates
4
modulates inflammatory
4
inflammatory response
4
response fibrosis
4
fibrosis acute
4
acute ischemia
4
correction
1
mir-210
1

Similar Publications

In animal studies it has been observed that the inhibitory neuromodulator adenosine is released into the cerebral interstitial space during hypoxic challenges. Adenosine's actions on the A adenosine receptor (AAR) protect the brain from oxygen deprivation and overexertion through adjustments in cerebral blood flow, metabolism, and electric activity. Using 8-cyclopentyl-3-(3-[F]fluoropropyl)-1-propylxanthine ([F]CPFPX), a PET tracer for the AAR, we tested the hypothesis that hypoxia-induced adenosine release reduces AAR availability in the human brain.

View Article and Find Full Text PDF

The thienopyridine A-769662 and benzimidazole 991 inhibit human TASK-3 potassium channels in an AMPK-independent manner.

Biochem Pharmacol

December 2024

Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK. Electronic address:

Article Synopsis
  • TASK-1/3 channels in carotid body type 1 cells are key for sensing low oxygen levels, affecting potassium currents and ultimately influencing breathing patterns.
  • Recent studies questioned whether AMP-activated protein kinase (AMPK) directly inhibits TASK-3 channels in response to hypoxia, although a recognizable phosphorylation motif was found in human TASK-3.
  • Experiments with various AMPK activators indicated that two compounds, A-769662 and 991, inhibit hTASK-3 currents, while establishing that AMPK does not regulate TASK-3 currents as initially proposed.
View Article and Find Full Text PDF

Erratum: Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis: Erratum.

Theranostics

May 2024

Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.

[This corrects the article DOI: 10.7150/thno.44419.

View Article and Find Full Text PDF

The regulation of red blood cell (RBC) homeostasis by erythropoietin (EPO) is critical for O2 transport and maintaining the adequate number of RBCs in vertebrates. Therefore, dysregulation in EPO synthesis results in disease conditions such as polycythemia in the case of excessive EPO production and anemia, which occurs when EPO is inadequately produced. EPO plays a crucial role in treating anemic patients; however, its overproduction can increase blood viscosity, potentially leading to fatal heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!