COVID-19 mRNA vaccines.

J Genet Genomics

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:

Published: February 2021

AI Article Synopsis

  • - The COVID-19 pandemic emphasizes the critical demand for safe and effective vaccines due to its massive societal and economic disruptions.
  • - Two mRNA vaccines have rapidly progressed through late-stage clinical trials and have shown promising results.
  • - The review discusses important aspects of mRNA vaccine development, new findings from ongoing clinical trials, and potential challenges ahead for these vaccines.

Article Abstract

The ongoing COVID-19 pandemic and its unprecedented global societal and economic disruptive impact highlight the urgent need for safe and effective vaccines. Taking substantial advantages of versatility and rapid development, two mRNA vaccines against COVID-19 have completed late-stage clinical assessment at an unprecedented speed and reported positive results. In this review, we outline keynotes in mRNA vaccine development, discuss recently published data on COVID-19 mRNA vaccine candidates, focusing on those in clinical trials and analyze future potential challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959685PMC
http://dx.doi.org/10.1016/j.jgg.2021.02.006DOI Listing

Publication Analysis

Top Keywords

covid-19 mrna
8
mrna vaccines
8
mrna vaccine
8
covid-19
4
vaccines ongoing
4
ongoing covid-19
4
covid-19 pandemic
4
pandemic unprecedented
4
unprecedented global
4
global societal
4

Similar Publications

Safety and immunogenicity of an mRNA-1273 vaccine booster in adolescents.

Hum Vaccin Immunother

December 2025

Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA.

Safety, immunogenicity, and effectiveness of an mRNA-1273 50-μg booster were evaluated in adolescents (12-17 years), with and without pre-booster SARS-CoV-2 infection. Participants who had received the 2-dose mRNA-1273 100-µg primary series in the TeenCOVE trial (NCT04649151) were offered the mRNA-1273 50-μg booster. Primary objectives included safety and inference of effectiveness by establishing noninferiority of neutralizing antibody (nAb) responses after the booster compared with the nAb post-primary series of mRNA-1273 among young adults in COVE (NCT04470427).

View Article and Find Full Text PDF

Aims: This study aims to conduct a bibliometric and visual analysis of published studies on myocarditis and coronavirus disease 2019 (COVID-19) vaccines.

Background: The widespread epidemic of COVID-19 has caused millions of deaths and profoundly affected the global medical landscape. Studies on COVID-19 vaccination and related myocarditis have also increased significantly.

View Article and Find Full Text PDF

Introduction: Despite the efficacy and safety of SARS-CoV-2 vaccines, inflammatory and/or thrombotic episodes have been reported. Since the impact of COVID-19 vaccines on the endothelium remains uncertain, our objective was to assess endothelial activation status before and 90 days after the third dose of the BNT162b2 mRNA COVID-19 vaccine.

Methods: A prospective longitudinal study was conducted at University General Hospital of Albacete, involving 38 healthy health-care workers.

View Article and Find Full Text PDF

Atomic Insights into pH-Dependent and Water Permeation of mRNA-Lipid Nanoparticles.

Mol Pharm

January 2025

Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

The exposure of mRNA to water is likely to contribute to the instability of RNA vaccines upon storage under nonfrozen conditions. Using atomistic molecular dynamics (MD) simulations, we investigated the pH-dependent structural transition and water penetration behavior of mRNA-lipid nanoparticles (LNPs) with the compositions of Moderna and Pfizer vaccines against COVID-19 in an aqueous solution. It was revealed that the ionizable lipid (IL) membranes of LNPs were extremely sensitive to pH, and the increased acidity could cause a rapid membrane collapse and hydration swelling of LNP, confirming the high releasing efficiency of both LNP vaccines.

View Article and Find Full Text PDF

Advances in nucleic acid-based cancer vaccines.

J Biomed Sci

January 2025

National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.

Nucleic acid vaccines have emerged as crucial advancements in vaccine technology, particularly highlighted by the global response to the COVID-19 pandemic. The widespread administration of mRNA vaccines against COVID-19 to billions globally marks a significant milestone. Furthermore, the approval of an mRNA vaccine for Respiratory Syncytial Virus (RSV) this year underscores the versatility of this technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!