In this work, we show how "chimera states," namely, the dynamical situation when synchronized and desynchronized domains coexist in an oscillator ensemble, can be controlled through a linear augmentation (LA) technique. Specifically, in the networks of coupled chaotic oscillators, we obtain chimera states through induced multistability and demonstrate how LA can be used to control the size and spatial location of the incoherent and coherent populations in the ensemble. We examine basins of attraction of the system to analyze the effects of LA on its multistable behavior and thus on chimera states. Stability of the synchronized dynamics is analyzed through a master stability function. We find that these results are independent of a system's initial conditions and the strategy is applicable to the networks of globally, locally as well as nonlocally coupled oscillators. Our results suggest that LA control can be an effective method to control chimera states and to realize a desired collective dynamics in such ensembles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.042202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!