We numerically realize a breather gas for the focusing nonlinear Schrödinger equation. This is done by building a random ensemble of N∼50 breathers via the Darboux transform recursive scheme in high-precision arithmetics. Three types of breather gases are synthesized according to the three prototypical spectral configurations corresponding the Akhmediev, Kuznetsov-Ma, and Peregrine breathers as elementary quasiparticles of the respective gases. The interaction properties of the constructed breather gases are investigated by propagating through them a "trial" generic (Tajiri-Watanabe) breather and comparing the mean propagation velocity with the predictions of the recently developed spectral kinetic theory [El and Tovbis, Phys. Rev. E 101, 052207 (2020)2470-004510.1103/PhysRevE.101.052207].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.042205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!