Evaporation of streams of liquid droplets in environments at vacuum pressures below the vapor pressure has not been widely studied. Here, experiments and simulations are reported that quantify the change in droplet diameter when a steady stream of ≈100 μm diameter drops is injected into a chamber initially evacuated to <10^{-8}bar. In experiments, droplets fall through the center of a 0.8 m long liquid nitrogen cooled shroud, simulating infinity radiation and vapor mass flux boundary conditions. Experimentally measured changes in drop diameters vary from ≈0 to 6 μm when the initial vapor pressure is increased from 10^{-6} to 10^{-3} bar by heating the liquid. Measured diameter changes are predicted by a model based on the Hertz-Knudsen equation. One uncertainty in the calculation is the "sticking coefficient" β. Assuming a constant β for all conditions studied here, predicted diameter changes best match measurements with β≈0.3. This value falls within the range of β reported in the literature for organic liquids. Finally, at the higher vapor pressure conditions considered here, the drop stream disperses transverse to the main flow direction. This spread is attributed to forces imparted by an absolute pressure gradient produced by the evaporating stream.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.103.043105DOI Listing

Publication Analysis

Top Keywords

vacuum pressures
8
evaporation propagation
4
propagation liquid
4
liquid drop
4
drop streams
4
streams vacuum
4
pressures experiments
4
experiments modeling
4
modeling evaporation
4
evaporation streams
4

Similar Publications

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Cutting tools with orderly arranged diamond grits using additive manufacturing show better sharpness and longer service life than traditional diamond tools. A retractable needle jig with vacuum negative pressure was used to absorb and place grits in an orderly arranged manner. However, needle hole wear after a long service time could not promise complete grit adsorption forever.

View Article and Find Full Text PDF

An analytical solution for internal forces of shallow circular low-to-vacuum tunnel linings in soft soils.

Sci Rep

December 2024

State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou, 450001, China.

This paper presents an analytical solution derived with force method for the internal forces in the ring lining of maglev train tunnels, which are typically in a circular section and shallowly buried with low vacuum air pressure in the lining. The model incorporates the vacuum pressure induced by the differences in air pressures outside and inside the lining, and the vacuum pressure is assumed to be the active load exerting to the outside of the lining. The model assumes the vertical overburden acting on the lining is proportional to the soil depth at every particular point along the tunnel lining circumference.

View Article and Find Full Text PDF

Objectives: To examine quality of maternal and newborn care (QMNC) around childbirth in facilities in Belgium during the COVID-19 pandemic and trends over time.

Design: A cross-sectional observational study.

Setting: Data of the Improving MAternal Newborn carE in the EURO region study in Belgium.

View Article and Find Full Text PDF

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!