A classical α-XY inertial model, consisting of N two-component rotators and characterized by interactions decaying with the distance r_{ij} as 1/r_{ij}^{α} (α≥0) is studied through first-principle molecular-dynamics simulations on d-dimensional lattices of linear size L (N≡L^{d} and d=1,2,3). The limits α=0 and α→∞ correspond to infinite-range and nearest-neighbor interactions, respectively, whereas the ratio α/d>1 (0≤α/d≤1) is associated with short-range (long-range) interactions. By analyzing the time evolution of the kinetic temperature T(t) in the long-range-interaction regime, one finds a quasi-stationary state (QSS) characterized by a temperature T_{QSS}; for fixed N and after a sufficiently long time, a crossover to a second plateau occurs, corresponding to the Boltzmann-Gibbs temperature T_{BG} (as predicted within the BG theory), with T_{BG}>T_{QSS}. It is shown that the QSS duration (t_{QSS}) depends on N, α, and d, although the dependence on α appears only through the ratio α/d; in fact, t_{QSS} decreases with α/d and increases with both N and d. Considering a fixed energy value, a scaling for t_{QSS} is proposed, namely, t_{QSS}∝N^{A(α/d)}e^{-B(N)(α/d)^{2}}, analogous to a recent analysis carried out for the classical α-Heisenberg inertial model. It is shown that the exponent A(α/d) and the coefficient B(N) present universal behavior (within error bars), comparing the XY and Heisenberg cases. The present results should be useful for other long-range systems, very common in nature, like those characterized by gravitational and Coulomb forces.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.103.042110DOI Listing

Publication Analysis

Top Keywords

inertial model
8
quasi-stationary-state duration
4
duration classical
4
classical d-dimensional
4
d-dimensional long-range
4
long-range inertial
4
inertial ferromagnet
4
ferromagnet classical
4
classical α-xy
4
α-xy inertial
4

Similar Publications

Objectives: Freezing of Gait (FOG) is one of the disabling symptoms in patients with Parkinson's Disease (PD). While it is difficult to early detect because of the sporadic occurrence of initial freezing events. Whether the characteristic of gait impairments in PD patients with FOG during the 'interictal' period is different from that in non-FOG patients is still unclear.

View Article and Find Full Text PDF

The working performance of the discrete functional surface is affected by the surface form. Both the surface form and the geometric function should be considered in tolerance design. However, the tolerance of different parts has different influence on the geometric function and surface form.

View Article and Find Full Text PDF

Temporal parameters are crucial for understanding running performance, especially in elite sports environments. Traditional measurement methods are often labor-intensive and not suitable for field conditions. This study seeks to provide greater clarity in parameter estimation using a single device by comparing it to the gold standard.

View Article and Find Full Text PDF

In response to the current situation of backward automation levels, heavy labor intensities, and high accident rates in the underground coal mine auxiliary transportation system, the mining trackless auxiliary transportation robot (MTATBOT) is presented in this paper. The MTATBOT is specially designed for long-range, space-constrained, and explosion-proof underground coal mine environments. With an onboard perception and autopilot system, the MTATBOT can perform automated and unmanned subterranean material transportation.

View Article and Find Full Text PDF

Fatigue-Induced Failure of Polysilicon MEMS: Nonlinear Reduced-Order Modeling and Geometry Optimization of On-Chip Testing Device.

Micromachines (Basel)

December 2024

Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.

In the case of repeated loadings, the reliability of inertial microelectromechanical systems (MEMS) can be linked to failure processes occurring within the movable structure or at the anchors. In this work, possible debonding mechanisms taking place at the interface between the polycrystalline silicon film constituting the movable part of the device and the silicon dioxide at the anchor points are considered. In dealing with cyclic loadings possibly inducing fatigue failure, a strategy is proposed to optimize the geometry of an on-chip testing device designed to characterize the strength of the aforementioned interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!