Pentatricopeptide repeat (PPR) proteins play important roles in plant growth and development. However, little is known about their functions in the leaf morphogenesis of Jingxiu grape (Vitis vinifera L.). Here, we explored the function of VvPPR1, which encodes a DYW-type PPR protein in grape. We showed that VvPPR1 is involved in the regulation of leaf rolling, anthocyanin accumulation, and trichome formation in Arabidopsis thaliana. Analysis of structural characteristics showed that VvPPR1 is a DYW-type PPR gene in the PLS subfamily consisting of 15 PPR motifs. The N-terminal had a targeted chloroplast site, and the C-terminal had a DYW domain. Quantitative PCR analysis revealed that the expression level of VvPPR1 was highest in grape leaves. Subcellular localization revealed that VvPPR1 is localized in the cytoplasm and chloroplast. VvPPR1-overexpressing plants had rolled leaves, high degrees of anthocyanin accumulation, and longer trichomes. The expression levels of genes related to these phenotypes were either significantly up-regulated or down-regulated. These results demonstrate that VvPPR1 is involved in leaf rolling, anthocyanin accumulation, and trichome formation in Arabidopsis; more generally, our findings indicate that VvPPR1 could be a target for improving the cultivation of horticultural crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.04.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!