Ligustilide inhibited Angiotensin II induced A7r5 cell autophagy via Akt/mTOR signaling pathway.

Eur J Pharmacol

School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China. Electronic address:

Published: August 2021

Autophagy is essential to vessel homeostasis and function in the cardiovascular system. Ligustilide (LIG) is one of the main active ingredients extracted from traditional Chinese medicines, such as Ligusticum chuanxiong, Angelica, and other umbelliferous plants, and reported to have cardiovascular protective effects. In this study, we explore the effects and the potential mechanism of ligustilide on the Ang II-induced autophagy in A7r5 cells. Our results showed that ligustilide inhibited the Ang II-induced autophagy in A7r5 cells and down regulated the expression of autophagy-related proteins LC3, ULK1, and Beclin-1. Ligustilide exerted a protective effect on the reduction of the concentrations of reactive oxygen species and Ca and upregulated the nitric oxide concentration in A7r5 cells with Ang II-induced autophagy. Additionally, the analyses of network pharmacological targets and potential signal pathways indicated that the target of ligustilide to regulate autophagy was related to the Akt/mTOR signaling pathway. Furthermore, ligustilide could upregulate the expression of p-Akt and p-mTOR and inhibit the expression of LC3II in A7r5 cells with Ang II-induced autophagy. These findings showed that ligustilide inhibited the autophagic flux in A7r5 cells induced by Ang II via the activation of the Akt/mTOR signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2021.174184DOI Listing

Publication Analysis

Top Keywords

a7r5 cells
20
ang ii-induced
16
ii-induced autophagy
16
ligustilide inhibited
12
akt/mtor signaling
12
signaling pathway
12
ligustilide
8
autophagy akt/mtor
8
autophagy a7r5
8
cells ang
8

Similar Publications

Endothelium-independent vasorelaxant effects of Curcuma phaeocaulis essential oil and its representative compound isocurcumenol.

J Ethnopharmacol

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. Electronic address:

Ethnopharmacological Relevance: The rhizomes of Curcuma phaeocaulis Val. are a Rhizoma curcumae source in Chinese pharmacopoeia, and this traditional Chinese medicine has been extensively used in China to promote blood circulation and remove blood stasis. However, little is known regarding the vasodilatory effects and underlying mechanisms.

View Article and Find Full Text PDF

Background: Paternal preconception alcohol exposure affects fetal development; however, it is largely unknown about the influences on offspring vasculature and mechanisms.

Methods: Offspring born form paternal rats treated with alcohol or water before pregnant was raised until 3 months of age. Vessel tone of mesenteric arteries was detected using myograph system; whole-cell calcium channel current in smooth muscle cells was tested using patch-clamp; molecule expressions were detected with real-time PCR, western blotting, and Dihydroethidium (DHE); DNA methylations were determined using targeted bisulfate sequencing assay.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

Rational Development of a Lipid Droplets and Hypochlorous Acid In-Sequence Responsive Fluorescent Probe for Accurate Imaging of Atherosclerotic Plaques.

Anal Chem

January 2025

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.

To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!