A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extending the allelic spectrum at noncoding risk loci of orofacial clefting. | LitMetric

AI Article Synopsis

  • Genome-wide association studies (GWAS) have provided significant insights into the genetic causes of orofacial clefting (OFC), but challenges arise due to the moderate effect sizes of noncoding risk variants and difficulty in accessing relevant tissues.
  • An alternative method to understand the genetic mechanisms is to identify rare variants with stronger effects by focusing on specific mutations and analyzing genomic regions associated with OFC.
  • The study reports a targeted resequencing approach using a multiethnic population to identify likely harmful rare variants in candidate regulatory regions linked to nonsyndromic cleft lip/palate, offering a scalable framework for exploring other congenital conditions.

Article Abstract

Genome-wide association studies (GWAS) have generated unprecedented insights into the genetic etiology of orofacial clefting (OFC). The moderate effect sizes of associated noncoding risk variants and limited access to disease-relevant tissue represent considerable challenges for biological interpretation of genetic findings. As rare variants with stronger effect sizes are likely to also contribute to OFC, an alternative approach to delineate pathogenic mechanisms is to identify private mutations and/or an increased burden of rare variants in associated regions. This report describes a framework for targeted resequencing at selected noncoding risk loci contributing to nonsyndromic cleft lip with/without cleft palate (nsCL/P), the most frequent OFC subtype. Based on GWAS data, we selected three risk loci and identified candidate regulatory regions (CRRs) through the integration of credible SNP information, epigenetic data from relevant cells/tissues, and conservation scores. The CRRs (total 57 kb) were resequenced in a multiethnic study population (1061 patients; 1591 controls), using single-molecule molecular inversion probe technology. Combining evidence from in silico variant annotation, pedigree- and burden analyses, we identified 16 likely deleterious rare variants that represent new candidates for functional studies in nsCL/P. Our framework is scalable and represents a promising approach to the investigation of additional congenital malformations with multifactorial etiology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24219DOI Listing

Publication Analysis

Top Keywords

noncoding risk
12
risk loci
12
rare variants
12
orofacial clefting
8
extending allelic
4
allelic spectrum
4
spectrum noncoding
4
risk
4
loci orofacial
4
clefting genome-wide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!