Corneal Application of R9-SOCS1-KIR Peptide Alleviates Endotoxin-Induced Uveitis.

Transl Vis Sci Technol

Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA.

Published: March 2021

Purpose: Uveitis is an ocular inflammation that can affect individuals of all ages and is a major cause of blindness. We have tested the therapeutic efficacy of a cell penetrating peptide from the kinase inhibitory region of suppressor of cytokine signaling 1, denoted as R9-SOCS1-KIR.

Methods: We stimulated J774A.1 cells with lipopolysaccharide (LPS) in the presence of R9-SOCS1-KIR or its inactive control peptide. Effect on inflammatory pathways was followed by the nuclear translocation of nuclear factor κB p65 subunit and phosphorylated-p38. Synthesis of inflammatory markers induced by LPS was tested by reverse transcriptase polymerase chain reaction, Western blot analysis, and ELISA of cell supernatants. We monitored effects on the barrier properties of a differentiated ARPE-19 monolayer treated with LPS. We treated C57BL/6 mice topically with either R9-SOCS1-KIR or vehicle and injected their eyes intravitreally with LPS. Eyes were analyzed by fundoscopy, fluorescein angiography, optical coherence tomography, histology, Western blotting, multiplex enzyme-linked immunosorbent assay, and flow cytometry.

Results: Treatment with R9-SOCS1-KIR resulted in suppression of signaling through nuclear factor κB and p-p38 pathways. R9-SOCS1-KIR suppressed the expression of inflammatory genes, the secretion of inflammatory makers such as nitric oxide, and IL-1β induced by LPS. Increased permeability of retinal pigment epithelial cell monolayers was prevented. Corneal administration of R9-SOCS1-KIR blocked the acute inflammation observed in LPS-injected mouse eyes.

Conclusions: Treatment with R9-SOCS1-KIR alleviated the inflammatory responses in cell culture. Topical delivery of this peptide on mouse eyes protected against LPS-induced damage.

Translational Relevance: Topical delivery of R9-SOCS1-KIR peptide allows the patient to self-administer the drug, while preventing any systemic effects on unrelated organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995917PMC
http://dx.doi.org/10.1167/tvst.10.3.25DOI Listing

Publication Analysis

Top Keywords

r9-socs1-kir
8
r9-socs1-kir peptide
8
nuclear factor
8
factor κb
8
induced lps
8
treatment r9-socs1-kir
8
topical delivery
8
peptide
5
lps
5
inflammatory
5

Similar Publications

Several blinding diseases affecting the retina and optic nerve are exacerbated by or caused by dysregulated inflammation and oxidative stress. These diseases include uveitis, age related macular degeneration, diabetic retinopathy and glaucoma. Consequently, despite their divergent symptoms, treatments that reduce oxidative stress and suppress inflammation may be therapeutic.

View Article and Find Full Text PDF

Purpose: Uveitis is an ocular inflammation that can affect individuals of all ages and is a major cause of blindness. We have tested the therapeutic efficacy of a cell penetrating peptide from the kinase inhibitory region of suppressor of cytokine signaling 1, denoted as R9-SOCS1-KIR.

Methods: We stimulated J774A.

View Article and Find Full Text PDF

We describe an immunosuppressive peptide corresponding to the kinase inhibitory region (KIR) of the intracellular checkpoint protein suppressor of cytokine signaling 1 (SOCS-1) that binds to the phospho-tyrosine containing regions of the tyrosine kinases JAK2 and TYK2 and the adaptor protein MAL, and thereby inhibits signaling downstream from these signaling mediators. The peptide, SOCS1-KIR, is thus capable of downregulating overactive JAK/STAT or NF-kB signaling in somatic cells, including those in many compartments of the eye. Attachment of poly-arginine to this peptide (R9-SOCS1-KIR) allows it to penetrate the plasma membrane in aqueous media.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!