Purpose: The purpose of this study was to investigate local differences of macular retinal ganglion cell (RGC) function by means of the steady-state pattern electroretinogram (SS-PERG).
Methods: SS-PERGs were recorded in healthy subjects (n = 43) in response to gratings (1.6 c/deg, 15.63 reversals/s, and 98% contrast) presented on an LED display (800 cd/m2, 12.5 degrees eccentricity at 30 cm viewing distance) partitioned in triangular sectors (inferior [I]; nasal [N]; superior [S]; and temporal [T]) or concentric regions (central [C] and annulus [A]). For each partition, response amplitude (nV), amplitude adaptation (% change over recording time), phase/latency (deg/ms), and oscillatory potentials (OPs) amplitude (root mean square [RMS] nV) were measured. Data were analyzed with Generalized Estimating Equation (GEE) statistics.
Results: Amplitude differed (P < 0.001) between sectors (I: 254 nV; N: 328 nV; S: 275 nV; T: 264 nV; and N>T, I) as well as concentrically (C: 684 nV; A: 323 nV; and C>A). Latency did not differ between sectors (range = 53-54 ms, P = 0.45) or concentrically (range = 51-51 ms, P = 0.7). Adaptation did not differ (P = 0.66) concentrically (C: -19% and A: -22%) but differed (P = 0.004) between sectors (I: +25% and S: -29%). The OP amplitude did not differ (P = 0.5) between sectors (range = 63-73 nV) as well as concentrically (range = 82-90 nV, P = 0.3).
Conclusions: Amplitude profiles paralleled RGC densities from histological studies. Adaptation profile suggested greater autoregulatory challenge in the inferior retina. Latency profile may reflect axonal conduction time to the optic nerve head assuming a direct relationship between axon length and its size/velocity. Location-independent OPs may reflect preganglionic activity.
Translational Relevance: Normal macular RGC function displays local differences that may be related to local vulnerability in optic nerve disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995921 | PMC |
http://dx.doi.org/10.1167/tvst.10.3.28 | DOI Listing |
J Ophthalmic Inflamm Infect
January 2025
School of Medicine, National Taiwan University, Taipei, Taiwan.
Purpose: To identify the macular retinal layer thickness changes in polyarteritis nodosa (PAN) patients without pathological findings appearing in color fundus photography (CFP), and to investigate the correlations with disease durations.
Methods: A total of 24 PAN patients who had been for 3 years or more and underwent SD-OCT were recruited from the UK Biobank, with exclusions for diabetes, eye disease, or abnormal CFP findings. Only the right eyes were included, with each PAN patient paired one-to-one with a control matched for age, sex, and ethnicity.
Turk J Pediatr
December 2024
Department of Pediatric Neurology, University of Health Sciences, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul, Türkiye.
Background: This study aims to compare the posterior ocular structure parameters in children with migraine without aura (MWA), tension-type headache (TTH), and a healthy control group.
Methods: The study included 31 patients with MWA, 29 patients with TTH, and 38 healthy controls between 6 and 18 years of age. For all participants, the detailed eye examination and measurements including peripapillary retinal nerve fiber layer (pRNFL) thickness, central macular thickness (CMT), subfoveal choroidal thickness (SCT), macular vessel densities and foveal avascular zone (FAZ) parameters measured by optical coherence tomography (OCT) and OCT-angiography (OCTA), were obtained from the patient files.
Clin Ophthalmol
January 2025
Department of Ophthalmology, New Vision Eye Center, Vero Beach, FL, USA.
Purpose: To assess the 12-month outcomes in subjects developing macular neovascularization (MNV) during intravitreal avacincaptad pegol (IVA) treatment for geographic atrophy (GA) secondary to age-related macular degeneration (AMD).
Methods: This research was conducted as a case-controlled, retrospective study of AMD subjects undergoing IVA treatment for GA from two private practice institutions. Subjects were divided into 1) a Study Group of patients who developed MNV and then underwent anti-vascular endothelial growth factor (VEGF) therapy during the study period, and 2) a Control Group of patients who were complication-free during the study period.
BMJ Open
December 2024
Westmead Institute for Medical Research, Westmead, New South Wales, Australia
Introduction: Diabetic macular oedema (DMO), a serious ocular complication of diabetic retinopathy (DR), is a leading cause of vision impairment worldwide. If left untreated or inadequately treated, DMO can lead to irreversible vision loss and blindness. Intravitreal injections using antivascular endothelial growth factor (anti-VEGF) and laser are the current standard of treatment for DMO.
View Article and Find Full Text PDFInt J Retina Vitreous
January 2025
Army Hospital Research & Referral, Delhi Cantt, New Delhi, Delhi, 110010, India.
Background: Management of Diabetic Macular edema (DME) requires repeated injections. Therefore newer Anti-VEGFs like Brolucizumab with longer durability have been introduced. We compared two different dosages of Brolucizumab, 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!