Purpose: To evaluate the areas of lesion components of polypoidal choroidal vasculopathy (PCV) measured using multicolor imaging compared to indocyanine green angiography (ICGA).

Methods: In a prospective study of 50 consecutive treatment-naïve PCV patients, multicolor imaging and ICGA were performed. The images were independently graded by reading center-certified retinal specialists to confirm the diagnosis of PCV and identify lesion components. The areas of the respective lesion components were compared.

Results: The mean age of the participants was 67.8 years. PCV was diagnosed in 96% of eyes using multicolor imaging. The mean numbers of polypoidal lesions identified using ICGA and multicolor were 4.0 and 2.1, respectively (P < 0.001), with mean total polypoidal lesion areas of 0.32 mm2 versus 0.30 mm2 (P = 0.727). The area of the branching vascular network (BVN) on ICGA was 7.8 mm2 compared to 5.7 mm2 on multicolor imaging (P = 0.289). Patients with four or more polypoidal lesions on ICGA had larger differences in total lesion area between ICGA and multicolor imaging (4.07 vs. -0.70 mm2, p = 0.039). Those with total lesion area ≥ 2.0 mm2 on ICGA had larger differences in mean polypoidal lesion number compared to those with smaller areas (2.2 vs. 0.5; P = 0.026).

Conclusions: Multicolor imaging is a useful, noninvasive adjunct for detecting PCV lesion components, revealing lesion areas similar to but generally smaller than those seen on ICGA. This is important to consider when making treatment decisions with different imaging modalities.

Translational Relevance: New features seen on multicolor imaging can aid in the diagnosis and treatment of PCV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910643PMC
http://dx.doi.org/10.1167/tvst.10.2.35DOI Listing

Publication Analysis

Top Keywords

multicolor imaging
32
lesion components
16
lesion
10
multicolor
9
imaging
9
polypoidal choroidal
8
choroidal vasculopathy
8
measured multicolor
8
indocyanine green
8
green angiography
8

Similar Publications

Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.

View Article and Find Full Text PDF

Dynamic Monitoring of Organelle Interactions in Living Cells via Two-Color Digitally Enhanced Stimulated Emission Depletion Super-resolution Microscopy.

J Phys Chem Lett

January 2025

College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China.

One of the most significant advances in stimulated emission depletion (STED) super-resolution microscopy is its capacity for dynamic super-resolution imaging of living cells, including the long-term tracking of interactions between various cells or organelles. Consequently, the multicolor STED plays a pivotal role in biological research. Despite the emergence of numerous fluorescent probes characterized by low toxicity, high stability, high brightness, and exceptional specificity, enabling dynamic imaging of living cells with multicolor STED, practical implementation of multicolor STED for live-cell imaging is influenced by several factors.

View Article and Find Full Text PDF

: We aimed to assess the relationship among circulating extracellular vesicles (EVs), hypoxia-related proteins, and the conventional risk factors of life-threatening coronary artery disease (CAD) to find more precise novel biomarkers. : Patients were categorized based on coronary CT angiography. Patients with a Segment Involvement Score > 5 were identified as CAD patients.

View Article and Find Full Text PDF

Background: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting various tumor-specific antigens, like interleukin 13 receptor alpha 2 (IL13RA2) and EGFRvIII, have been developed for glioblastoma (GBM). However, limited knowledge of BTE actions derived from studies conducted in immunocompromised animal models impedes progress in the field.

View Article and Find Full Text PDF

Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!