A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous hyperbaric oxygen therapy during systemic chemotherapy reverses chemotherapy-induced peripheral neuropathy by inhibiting TLR4 and TRPV1 activation in the central and peripheral nervous system. | LitMetric

AI Article Synopsis

  • Chemotherapy-induced peripheral neuropathy (CIPN) is a common and painful side effect in cancer patients undergoing paclitaxel treatment, and this study investigates the interaction of TLR4 and TRPV1 in this condition.
  • The research used a rat model to demonstrate that simultaneous hyperbaric oxygen therapy (SHBOT) during chemotherapy significantly improved CIPN symptoms compared to chemotherapy alone.
  • The findings indicate that SHBOT not only alleviates CIPN symptoms but also may prevent its worsening by reducing the activation of pain-related receptors and inflammation in the nervous system.

Article Abstract

Background And Objectives: Chemotherapy-induced peripheral neuropathy (CIPN) is considered one of the most common sequelae in patients with cancer who experience consistent abnormal sensations or pain symptoms during or after paclitaxel (PAC) chemotherapy. Transient receptor potential vanilloid 1 (TRPV1) and toll-like receptor 4 (TLR4) have been reported to interact in the nervous system in patients with CIPN. The antinociceptive effects of hyperbaric oxygen therapy (HBOT) on CIPN was demonstrated in this study through behavior tests. Using a CIPN rat model, we examined the effects of simultaneous HBOT (SHBOT) administration during chemotherapy and discovered that SHBOT achieved better reversal effects than chemotherapy alone.

Materials And Methods: Twenty-four rats were randomly allocated to four groups: control, PAC, SHBOT, and HBOT after PAC groups. Behavior tests were performed to evaluate mechanical allodynia and thermal hyperalgesia status. Tissues from the spinal cord and dorsal root ganglions were collected, and TLR4 and TRPV1 expression and microglial activation were investigated through immunofluorescence (IF) staining.

Results: The mechanical and thermal behavior tests revealed that HBOT intervention during PAC treatment led to the early alleviation of CIPN symptoms and inhibited CIPN deterioration. IF staining revealed that TLR4, TRPV1, and microglial activation were all upregulated in PAC-injected rats and exhibited early and significant downregulation in SHBOT-treated rats.

Conclusion: This study is the first to demonstrate that the use of SHBOT during PAC treatment has potential for the early suppression of CIPN initiation and deterioration, indicating that it can alleviate CIPN symptoms and may reverse CIPN in patients undergoing systemic chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00520-021-06269-8DOI Listing

Publication Analysis

Top Keywords

tlr4 trpv1
12
behavior tests
12
cipn
9
hyperbaric oxygen
8
oxygen therapy
8
systemic chemotherapy
8
chemotherapy-induced peripheral
8
peripheral neuropathy
8
nervous system
8
microglial activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!