Background: "Flexibility" is defined as "the range of movement or motion of a single or multiple joints." Its limits decline significantly with age, reaching maximum flexibility in the mid-to-late twenties for males and females, respectively. Conclusions regarding appropriate stretching time duration are mainly based on mechanical factors such as range of motion (ROM) and flexibility and tend to ignore the adverse neural mechanical tension that may be created during stretching exercises. It appears that longer-duration stretching increases flexibility for geriatric populations.

Aim: To explore the effect of variable stretching intervals on neural function and ROM.

Design: Double blind randomized controlled trial.

Setting: University research laboratory.

Population: One hundred participants, 60-65 years old, with a diagnosis of tight hamstring muscles, bilaterally, were randomly assigned to either a control group or one of three intervention groups.

Methods: Participants who were randomly placed in one of the three intervention groups, were further randomized by selection of right or left limb for intervention. Intervention groups consisted of either 15-, 30-, or 60-s stretches to hamstring muscles; whereas the control group was given a sham stretch for 20 seconds. Main Outcome Measures included the neurophysiological outcome measures; peak to peak amplitude of somatosensory evoked potential for dermatomes L4, L5, and S1. Secondary outcome measures included knee ROM. All outcome measures were assessed before, immediately after, and 24 hours after the treatment session. Mixed linear model analysis was used to evaluate group, time, and group x time interaction effects for outcome measures.

Results: Stretching for 30 and 60 s gave significant increase in ROM compared to control (4.64 [95% CI: 3.35, 5.93]; P<0.01) (10.30 [95% CI: 9.01, 11.6]; P<0.01) and the improvement was persistent at 24-hours' follow-up (P<0.01). However, the analysis showed significant reduction in dermatomal somatosensory evoked potentials' amplitudes for L4 (-1.19 [95% CI: -1.35, 1.02]; P<0.01), L5 (-1.34 [95% CI: -1.56, -1.13]; P<0.01), S1 (-0.99 [95% CI: -1.16, -0.83]; P<0.01) after 60-s static hamstring muscle stretch. The reduction was persistent at 24-hours' follow-up (P<0.01).

Conclusions: Stretching hamstring for 30 seconds was optimal in increasing the knee range of motion and minimizing the negative effects on the neural function of the involved nerve roots. Thus, 60-second static hamstring muscle stretching, places increased stress and strain on the nervous system and should be avoided.

Clinical Rehabilitation Impact: It is well established that stretching is an effective intervention to treat many neuromuscular and musculoskeletal problems. However, which exact parameters to follow during stretching procedures remains controversial. Our findings indicate that 60-s static stretching of hamstring at end ranges of motion, likely place increased stress and strain on the nerve roots and central nervous system, and should be avoided.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S1973-9087.21.06731-9DOI Listing

Publication Analysis

Top Keywords

outcome measures
16
randomized controlled
8
hamstring muscles
8
control group
8
three intervention
8
intervention groups
8
measures included
8
group time
8
stretching
6
group
5

Similar Publications

Multivariate pattern analysis was recently extended with covariate projections to solve the challenging task of modelling and interpreting associations in the presence of linear dependent multivariate covariates. Within a joint model, this approach allows quantification of the net association pattern between the outcome and the explanatory variables and between the individual covariates and these variables. The aim of this paper is to apply this methodology to establish the net multivariate association pattern between cardiorespiratory fitness (CRF) and a high-resolution linear dependent physical activity (PA) intensity descriptor derived from accelerometry in children and to validate the crucial sub-regions in the PA spectrum predicting CRF.

View Article and Find Full Text PDF

Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.

Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.

View Article and Find Full Text PDF

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Background: The use of intravenous tranexamic acid (TXA), an antifibrinolytic agent, has been shown to effectively reduce total blood loss and transfusion rates in total knee arthroplasty (TKA). The aim of this paper is to evaluate the implementation lag and clinical uptake of the use of TXA for primary TKA after publication of two landmark studies. Additionally, it assessed the efficacy of TXA use in TKA in reducing post-operative blood transfusions and hospital length of stay (LOS).

View Article and Find Full Text PDF

Background: Construct validity and responsiveness of upper limb outcome measures are essential to interpret motor recovery poststroke. Evaluating the associations between clinical upper limb measures and sensor-based arm use (AU) fosters a coherent understanding of motor recovery. Defining sensor-based AU metrics for intentional upper limb movements could be crucial in mitigating bias from walking-related activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!