A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Timely preterm-birth prediction among pregnant women in Medicaid without preterm-birth history. | LitMetric

AI Article Synopsis

  • The study aims to create and validate a model that predicts preterm birth in pregnant women on Medicaid who have no previous preterm birth history, using health claims and community-level socioeconomic data.
  • The research involved a longitudinal study in Texas, with a two-year phase for model development and a one-year phase for prospective validation, focusing on various health and demographic factors to categorize pregnancy risk.
  • The final model was based on nearly 7,000 pregnancies, demonstrated a higher predictive value for high-risk cases, identified significant risk factors, and proved effective in predicting over 80% of preterm births before 24 weeks gestation.

Article Abstract

Objectives: To develop and prospectively validate a novel model incorporating claims and community-level socioeconomic data to predict preterm birth at scale among pregnant Medicaid women with no history of preterm birth (PTB).

Study Design: A longitudinal Texas Medicaid cohort study, with 2-year retrospective model building (October 2015-October 2017) and a 1-year prospective model validation phase (January 2018-December 2018).

Methods: Inclusion criteria were females aged 11 to 55 years with at least 1 live singleton birth and no history of PTB. The primary outcome was live singleton birth earlier than 35 weeks. Covariates were medical/mental/behavioral comorbidities, obstetric history, sociodemographic characteristics, and health services utilization. Of multiple models built, the most parsimonious was selected to classify pregnancies as very high, high, medium, and low risk. Model performance was evaluated using positive predictive value (PPV), sensitivity, case identification ratio (1 / PPV), and timing of prediction.

Results: The model was built on 6689 pregnancies and validated on 7855 pregnancies. PTB rate earlier than 35 weeks was approximately 3.3%. Significant risk predictors included prenatal visit attendance, insurance gap days, and medical/obstetrical comorbidities. Model PPV was approximately 4-fold higher for very high-risk women (14.7%) vs cohort (3.3%) and so was the case identification ratio (1:7 vs 1:30, respectively). Sensitivity was good, with 57% of PTBs classified as medium risk or higher. Timing of prediction was clinically relevant, with more than 80% of PTBs risk stratified before 24 weeks.

Conclusions: We report a novel PTB prediction model among pregnant Medicaid women without PTB history, which is timely, accurate, practical, and scalable. We leverage Medicaid and community data readily accessible by Medicaid plans to support population-level interventions to prevent PTBs.

Download full-text PDF

Source
http://dx.doi.org/10.37765/ajmc.2021.88636DOI Listing

Publication Analysis

Top Keywords

preterm birth
8
pregnant medicaid
8
medicaid women
8
live singleton
8
singleton birth
8
earlier weeks
8
case identification
8
identification ratio
8
model
7
medicaid
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!