Organisms well suited for the study of ecotype formation have wide distribution ranges, where they adapt to multiple drastically different habitats repeatedly over space and time. Here we study such ecotypes in a Crustacean model, Asellus aquaticus, a commonly occurring isopod found in freshwater habitats as diverse as streams, caves and lakes. Previous studies focusing on cave vs. surface ecotypes have attributed depigmentation, eye loss and prolonged antennae to several south European cave systems. Likewise, surveys across multiple Swedish lakes have identified the presence of dark-pigmented "reed" and light-pigmented "stonewort" ecotypes, which can be found within the same lake. In this study, we sequenced the first draft genome of A. aquaticus, and subsequently use this to map reads and call variants in surface stream, cave and two lake ecotypes. In addition, the draft genome was combined with a RADseq approach to perform a quantitative trait locus (QTL) mapping study using a laboratory bred F and F cave × surface intercross. We identified genomic regions associated with body pigmentation, antennae length and body size. Furthermore, we compared genome-wide differentiation between natural populations and found several genes potentially associated with these habitats. The assessment of the cave QTL regions in the light-dark comparison of lake populations suggests that the regions associated with cave adaptation are also involved with genomic differentiation in the lake ecotypes. These demonstrate how troglomorphic adaptations can be used as a model for related ecotype formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.15987 | DOI Listing |
R Soc Open Sci
January 2025
Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany.
Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback () is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males.
View Article and Find Full Text PDFMicrobiome
November 2024
UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France.
Evolution
November 2024
Institute of Ecology and Evolution, University of Bern, Switzerland.
Variation of recombination rate along the genome is of crucial importance to rapid adaptation and organismal diversification. Many unknowns remain regarding how and why recombination landscapes evolve in nature. Here, we reconstruct recombination maps based on linkage disequilibrium and use subsampling and simulations to derive a new measure of recombination landscape evolution: the Population Recombination Divergence Index (PRDI).
View Article and Find Full Text PDFR Soc Open Sci
June 2024
School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA.
Host-microbiota interactions play a critical role in the hosts' biology, and thus, it is crucial to elucidate the mechanisms that shape gut microbial communities. We leveraged threespine stickleback fish () as a model system to investigate the contribution of host and environmental factors to gut microbiota variation. These fish offer a unique opportunity for experiments in naturalistic conditions; we reared benthic and limnetic ecotypes from three different lakes in experimental ponds, allowing us to assess the relative effects of shared environment (pond), geographic origin (lake-of-origin), trophic ecology and genetics (ecotype) and biological sex on gut microbiota α- and β-diversity.
View Article and Find Full Text PDFmedRxiv
July 2024
Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
Background: Cancer initiation, progression, and immune evasion depend on the tumor microenvironment (TME). Thus, understanding the TME immune architecture is essential for understanding tumor metastasis and therapy response. This study aimed to create an immune cell states (CSs) atlas using bulk RNA-seq data enriched by eco-type analyses to resolve the complex immune architectures in the TME.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!